Sometimes it can be useful to combine two functions to get a third.

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when • Studying Quadratics

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when \bigcirc Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q =quantity)

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when \bigcirc Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity) So, we can write: Revenue = R(q)

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when \bigcirc Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity)

So, we can write: Revenue = R(q)

Similarly, the Cost to produce q items is a function of quantity

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when \bigcirc Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity) So, we can write: *Revenue* = R(q)Similarly, the Cost to produce q items is a function of quantity So, we can write: *Cost* = C(q)

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when \bigcirc Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity) So, we can write: Revenue = R(q)

Similarly, the Cost to produce q items is a function of quantity

So, we can write: Cost = C(q)

Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when • Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity)

So, we can write: Revenue = R(q)

Similarly, the Cost to produce q items is a function of quantity

So, we can write: Cost = C(q)

Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

 $P = \mathbf{R} - \mathbf{C}$

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when \bigcirc Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity) So, we can write: *Revenue* = R(q)Similarly, the Cost to produce q items is a function of quantity So, we can write: Cost = C(q)Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

 $P = \mathbf{R} - \mathbf{C}$

What we mean by this is:

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when \bullet Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity) So, we can write: Revenue = R(q)

Similarly, the Cost to produce q items is a function of quantity

So, we can write: Cost = C(q)

Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

 $P = \mathbf{R} - \mathbf{C}$

What we mean by this is:

P(q) = R(q) - C(q)

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when • Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity)

So, we can write: Revenue = R(q)

Similarly, the Cost to produce q items is a function of quantity

So, we can write: Cost = C(q)

Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

 $P = \mathbf{R} - \mathbf{C}$

What we mean by this is:

P(q) = R(q) - C(q)

We compute each function separately, then subtract.

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when • Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity)

So, we can write: Revenue = R(q)

Similarly, the Cost to produce q items is a function of quantity

So, we can write: Cost = C(q)

Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

 $P = \mathbf{R} - \mathbf{C}$

What we mean by this is:

P(q) = R(q) - C(q)

We compute each function separately, then subtract.

In General: For two functions f(x) and g(x)

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when • Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity)

So, we can write: Revenue = R(q)

Similarly, the Cost to produce q items is a function of quantity

So, we can write: Cost = C(q)

Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$P = \mathbf{R} - \mathbf{C}$$

What we mean by this is:

P(q) = R(q) - C(q)

We compute each function separately, then subtract.

In General: For two functions f(x) and g(x)

$$(f-g)(x)=f(x)-g(x)$$

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when • Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q =quantity)

So, we can write: Revenue = R(q)

Similarly, the Cost to produce q items is a function of quantity

So, we can write: Cost = C(q)

Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

 $P = \mathbf{R} - \mathbf{C}$

What we mean by this is:

P(q) = R(q) - C(q)

We compute each function separately, then subtract.

In General: For two functions f(x) and g(x)

(f+g)(x) = f(x) + g(x)(f-g)(x) = f(x) - g(x)

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when • Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q =quantity)

So, we can write: Revenue = R(q)

Similarly, the Cost to produce q items is a function of quantity

So, we can write: Cost = C(q)

Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$P = \mathbf{R} - \mathbf{C}$$

What we mean by this is:

P(q) = R(q) - C(q)

We compute each function separately, then subtract.

In General: For two functions f(x) and g(x)

$$(f + g)(x) = f(x) + g(x)$$

 $(f - g)(x) = f(x) - g(x)$
 $(fg)(x) = f(x)g(x)$

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when \bigcirc Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes (q = quantity)

So, we can write: Revenue = R(q)

Similarly, the Cost to produce q items is a function of quantity

So, we can write: Cost = C(q)

Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$P = \mathbf{R} - \mathbf{C}$$

What we mean by this is:

P(q) = R(q) - C(q)

We compute each function separately, then subtract.

In General: For two functions f(x) and g(x)

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(fg)(x) = f(x)g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} : \text{ For } g(x) \neq 0$$

Sometimes it can be useful to combine two functions to get a third. In General: For two functions f(x) and g(x)

(f+g)(x) = f(x) + g(x) (f-g)(x) = f(x) - g(x) (fg)(x) = f(x)g(x) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ For $g(x) \neq 0$

Sometimes it can be useful to combine two functions to get a third. In General: For two functions f(x) and g(x)Example: f(x) = x + 1 and $g(x) = x^2$

(f+g)(x) = f(x) + g(x) (f-g)(x) = f(x) - g(x) (fg)(x) = f(x)g(x) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ For $g(x) \neq 0$

Sometimes it can be useful to combine two functions to get a third. In General: For two functions f(x) and g(x)Example: f(x) = x + 1 and $g(x) = x^2$

 $(f+g)(x) = f(x) + g(x) \qquad (f+g)(x) = x + 1 + x^2$ (f-g)(x) = f(x) - g(x) (fg)(x) = f(x)g(x) $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ For $g(x) \neq 0$

Sometimes it can be useful to combine two functions to get a third. In General: For two functions f(x) and g(x)Example: f(x) = x + 1 and $g(x) = x^2$

 $(f + g)(x) = f(x) + g(x) \qquad (f + g)(x) = x + 1 + x^{2}$ $(f - g)(x) = f(x) - g(x) \qquad (f - g)(x) = x + 1 - x^{2}$ $(fg)(x) = f(x)g(x) \qquad (f - g)(x) = x + 1 - x^{2}$ $(fg)(x) = f(x)g(x) \qquad (f - g)(x) = x + 1 - x^{2}$ $(fg)(x) = f(x)g(x) \qquad (f - g)(x) = x + 1 - x^{2}$ $(fg)(x) = f(x)g(x) \qquad (f - g)(x) = x + 1 - x^{2}$ $(fg)(x) = f(x)g(x) \qquad (f - g)(x) = x + 1 - x^{2}$

Sometimes it can be useful to combine two functions to get a third. In General: For two functions f(x) and g(x)Example: f(x) = x + 1 and $g(x) = x^2$

 $(f+g)(x) = f(x) + g(x) \qquad (f+g)(x) = x + 1 + x^{2}$ $(f-g)(x) = f(x) - g(x) \qquad (f-g)(x) = x + 1 - x^{2}$ $(fg)(x) = f(x)g(x) \qquad (fg)(x) = (x + 1)(x^{2})$ $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ For $g(x) \neq 0$

Sometimes it can be useful to combine two functions to get a third. In General: For two functions f(x) and g(x)Example: f(x) = x + 1 and $g(x) = x^2$

 $(f + g)(x) = f(x) + g(x) \qquad (f + g)(x) = x + 1 + x^{2}$ $(f - g)(x) = f(x) - g(x) \qquad (f - g)(x) = x + 1 - x^{2}$ $(fg)(x) = f(x)g(x) \qquad (fg)(x) = (x + 1)(x^{2}) = x^{3} + x^{2}$ $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ For $g(x) \neq 0$

Sometimes it can be useful to combine two functions to get a third. **In General:** For two functions f(x) and g(x)**Example:** f(x) = x + 1 and $g(x) = x^2$

 $(f + g)(x) = f(x) + g(x) \qquad (f + g)(x) = x + 1 + x^{2}$ $(f - g)(x) = f(x) - g(x) \qquad (f - g)(x) = x + 1 - x^{2}$ $(fg)(x) = f(x)g(x) \qquad (fg)(x) = (x + 1)(x^{2}) = x^{3} + x^{2}$ $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \qquad \left(\frac{f}{g}\right)(x) = \frac{x + 1}{x^{2}}$ For $g(x) \neq 0$

Sometimes it can be useful to combine two functions to get a third. In General: For two functions f(x) and g(x)Example: f(x) = x + 1 and $g(x) = x^2$

 $(f+g)(x) = f(x) + g(x) \qquad (f+g)(x) = x + 1 + x^{2}$ $(f-g)(x) = f(x) - g(x) \qquad (f-g)(x) = x + 1 - x^{2}$ $(fg)(x) = f(x)g(x) \qquad (fg)(x) = (x+1)(x^{2}) = x^{3} + x^{2}$ $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \qquad \left(\frac{f}{g}\right)(x) = \frac{x+1}{x^{2}}$ For $g(x) \neq 0$

We have already seen this operations before for polynomials.

Sometimes it can be useful to combine two functions to get a third. In General: For two functions f(x) and g(x)Example: f(x) = x + 1 and $g(x) = x^2$

$$(f + g)(x) = f(x) + g(x) \qquad (f + g)(x) = x + 1 + x^{2}$$

$$(f - g)(x) = f(x) - g(x) \qquad (f - g)(x) = x + 1 - x^{2}$$

$$(fg)(x) = f(x)g(x) \qquad (fg)(x) = (x + 1)(x^{2}) = x^{3} + x^{2}$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \qquad \left(\frac{f}{g}\right)(x) = \frac{x + 1}{x^{2}}$$

For $g(x) \neq 0$

We have already seen this operations before for polynomials. We are simply extending this idea to all functions.