Combining Functions

Combining Functions

Sometimes it can be useful to combine two functions to get a third.

Combining Functions

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when © Studying Quadratics

Combining Functions

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)

Combining Functions

Sometimes it can be useful to combine two functions to get a third. For example, we look at Profit, Revenue, and Cost when Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Studing Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$
Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Studing Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$
Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$
P=R-C
$$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Studing Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$
Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$
P=R-C
$$

What we mean by this is:

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when © Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$
Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$
P=R-C
$$

What we mean by this is:

$$
P(q)=R(q)-C(q)
$$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Studing Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$
Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$
P=R-C
$$

What we mean by this is:

$$
P(q)=R(q)-C(q)
$$

We compute each function separately, then subtract.

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Sudying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$
Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$
P=R-C
$$

What we mean by this is:

$$
P(q)=R(q)-C(q)
$$

We compute each function separately, then subtract.
In General: For two functions $f(x)$ and $g(x)$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$
Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$
P=R-C
$$

What we mean by this is:

$$
P(q)=R(q)-C(q)
$$

We compute each function separately, then subtract.
In General: For two functions $f(x)$ and $g(x)$
$(f-g)(x)=f(x)-g(x)$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$
Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$
P=R-C
$$

What we mean by this is:

$$
P(q)=R(q)-C(q)
$$

We compute each function separately, then subtract.
In General: For two functions $f(x)$ and $g(x)$
$(f+g)(x)=f(x)+g(x)$
$(f-g)(x)=f(x)-g(x)$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$
Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$
P=R-C
$$

What we mean by this is:

$$
P(q)=R(q)-C(q)
$$

We compute each function separately, then subtract.
In General: For two functions $f(x)$ and $g(x)$
$(f+g)(x)=f(x)+g(x)$
$(f-g)(x)=f(x)-g(x)$
$(f g)(x)=f(x) g(x)$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
For example, we look at Profit, Revenue, and Cost when Studying Quadratics The amount of money a company brings in (Revenue) is a function of the quantity of products it makes ($q=$ quantity)
So, we can write: Revenue $=R(q)$
Similarly, the Cost to produce q items is a function of quantity
So, we can write: Cost $=C(q)$
Profit is also a function of the quantity q, and we can write it in terms of R and C, which would we would write as:

$$
P=R-C
$$

What we mean by this is:

$$
P(q)=R(q)-C(q)
$$

We compute each function separately, then subtract.
In General: For two functions $f(x)$ and $g(x)$
$(f+g)(x)=f(x)+g(x)$
$(f-g)(x)=f(x)-g(x)$
$(f g)(x)=f(x) g(x)$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}:$ For $g(x) \neq 0$

Combining Functions

Sometimes it can be useful to combine two functions to get a third. In General: For two functions $f(x)$ and $g(x)$
$(f+g)(x)=f(x)+g(x)$
$(f-g)(x)=f(x)-g(x)$
$(f g)(x)=f(x) g(x)$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
For $g(x) \neq 0$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
In General: For two functions $f(x)$ and $g(x)$
Example: $f(x)=x+1$ and $g(x)=x^{2}$
$(f+g)(x)=f(x)+g(x)$
$(f-g)(x)=f(x)-g(x)$
$(f g)(x)=f(x) g(x)$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
For $g(x) \neq 0$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
In General: For two functions $f(x)$ and $g(x)$
Example: $f(x)=x+1$ and $g(x)=x^{2}$

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \quad(f+g)(x)=x+1+x^{2} \\
& (f-g)(x)=f(x)-g(x) \\
& (f g)(x)=f(x) g(x) \\
& \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
\end{aligned}
$$

For $g(x) \neq 0$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
In General: For two functions $f(x)$ and $g(x)$
Example: $f(x)=x+1$ and $g(x)=x^{2}$

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& (f-g)(x)=f(x)-g(x) \\
& (f g)(x)=f(x) g(x) \\
& \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
\end{aligned}
$$

$$
(f+g)(x)=x+1+x^{2}
$$

$$
(f-g)(x)=x+1-x^{2}
$$

For $g(x) \neq 0$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
In General: For two functions $f(x)$ and $g(x)$
Example: $f(x)=x+1$ and $g(x)=x^{2}$
$(f+g)(x)=f(x)+g(x)$
$(f+g)(x)=x+1+x^{2}$
$(f-g)(x)=f(x)-g(x)$
$(f-g)(x)=x+1-x^{2}$
$(f g)(x)=f(x) g(x)$
$(f g)(x)=(x+1)\left(x^{2}\right)$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$

For $g(x) \neq 0$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
In General: For two functions $f(x)$ and $g(x)$
Example: $f(x)=x+1$ and $g(x)=x^{2}$
$(f+g)(x)=f(x)+g(x)$
$(f+g)(x)=x+1+x^{2}$
$(f-g)(x)=f(x)-g(x)$
$(f-g)(x)=x+1-x^{2}$
$(f g)(x)=f(x) g(x)$
$(f g)(x)=(x+1)\left(x^{2}\right)=x^{3}+x^{2}$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$

For $g(x) \neq 0$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
In General: For two functions $f(x)$ and $g(x)$
Example: $f(x)=x+1$ and $g(x)=x^{2}$
$(f+g)(x)=f(x)+g(x)$
$(f+g)(x)=x+1+x^{2}$
$(f-g)(x)=f(x)-g(x)$
$(f-g)(x)=x+1-x^{2}$
$(f g)(x)=f(x) g(x)$
$(f g)(x)=(x+1)\left(x^{2}\right)=x^{3}+x^{2}$
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
$\left(\frac{f}{g}\right)(x)=\frac{x+1}{x^{2}}$

For $g(x) \neq 0$

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
In General: For two functions $f(x)$ and $g(x)$
Example: $f(x)=x+1$ and $g(x)=x^{2}$

$$
\begin{array}{ll}
(f+g)(x)=f(x)+g(x) & (f+g)(x)=x+1+x^{2} \\
(f-g)(x)=f(x)-g(x) & (f-g)(x)=x+1-x^{2} \\
(f g)(x)=f(x) g(x) & (f g)(x)=(x+1)\left(x^{2}\right)=x^{3}+x^{2} \\
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} & \left(\frac{f}{g}\right)(x)=\frac{x+1}{x^{2}}
\end{array}
$$

For $g(x) \neq 0$
We have already seen this operations before for polynomials.

Combining Functions

Sometimes it can be useful to combine two functions to get a third.
In General: For two functions $f(x)$ and $g(x)$
Example: $f(x)=x+1$ and $g(x)=x^{2}$

$$
\begin{array}{ll}
(f+g)(x)=f(x)+g(x) & (f+g)(x)=x+1+x^{2} \\
(f-g)(x)=f(x)-g(x) & (f-g)(x)=x+1-x^{2} \\
(f g)(x)=f(x) g(x) & (f g)(x)=(x+1)\left(x^{2}\right)=x^{3}+x^{2} \\
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} & \left(\frac{f}{g}\right)(x)=\frac{x+1}{x^{2}}
\end{array}
$$

For $g(x) \neq 0$
We have already seen this operations before for polynomials.
We are simply extending this idea to all functions.

