In the applet, we looked at $y = x^2 - 3$

In the applet, we looked at $y = x^2 - 3$ This vertically shifted the graph of $f(x) = x^2$ down by 3.

In the applet, we looked at $y = x^2 - 3$ This vertically shifted the graph of $f(x) = x^2$ down by 3. What about the graph of $g(x) = (x - 3)^2$

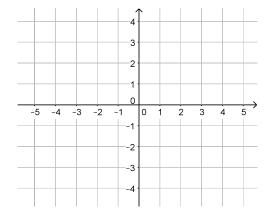
In the applet, we looked at $y = x^2 - 3$ This vertically shifted the graph of $f(x) = x^2$ down by 3. What about the graph of $g(x) = (x - 3)^2$ We are still working with the squaring function $f(x) = x^2$

In the applet, we looked at $y = x^2 - 3$ This vertically shifted the graph of $f(x) = x^2$ down by 3. What about the graph of $g(x) = (x - 3)^2$ We are still working with the squaring function $f(x) = x^2$ What is different about $y = x^2 - 3$ and $g(x) = (x - 3)^2$?

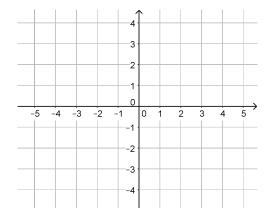
In the applet, we looked at $y = x^2 - 3$ This vertically shifted the graph of $f(x) = x^2$ down by 3. What about the graph of $g(x) = (x - 3)^2$ We are still working with the squaring function $f(x) = x^2$ What is different about $y = x^2 - 3$ and $g(x) = (x - 3)^2$? With $y = x^2 - 3$ we compute $f(x) = x^2$ first, then Subtract 3

In the applet, we looked at $y = x^2 - 3$ This vertically shifted the graph of $f(x) = x^2$ down by 3. What about the graph of $g(x) = (x - 3)^2$ We are still working with the squaring function $f(x) = x^2$ What is different about $y = x^2 - 3$ and $g(x) = (x - 3)^2$? With $y = x^2 - 3$ we compute $f(x) = x^2$ first, then Subtract 3 With $g(x) = (x - 3)^2$ we Subtract 3 first, then square

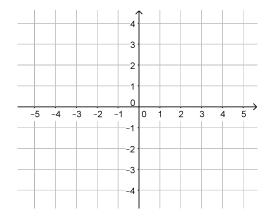
In the applet, we looked at $y = x^2 - 3$ This vertically shifted the graph of $f(x) = x^2$ down by 3. What about the graph of $g(x) = (x - 3)^2$ We are still working with the squaring function $f(x) = x^2$ What is different about $y = x^2 - 3$ and $g(x) = (x - 3)^2$? With $y = x^2 - 3$ we compute $f(x) = x^2$ first, then Subtract 3 With $g(x) = (x - 3)^2$ we Subtract 3 first, then square The way that we write this is: g(x) = f(x - 3)Because we first subtract (in the parentheses) then compute the squaring function $f(x) = x^2$

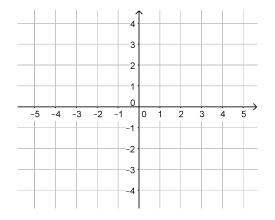

In the applet, we looked at $y = x^2 - 3$ This vertically shifted the graph of $f(x) = x^2$ down by 3. What about the graph of $g(x) = (x - 3)^2$ We are still working with the squaring function $f(x) = x^2$ What is different about $y = x^2 - 3$ and $g(x) = (x - 3)^2$? With $y = x^2 - 3$ we compute $f(x) = x^2$ first, then Subtract 3 With $g(x) = (x - 3)^2$ we Subtract 3 first, then square The way that we write this is: g(x) = f(x - 3)Because we first subtract (in the parentheses) then compute the squaring function $f(x) = x^2$

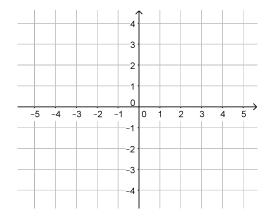
So, how does subtracting 3 *first* effect the graph of $f(x) = x^2$

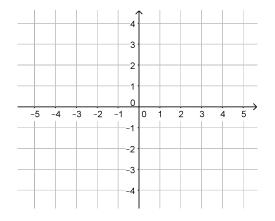

In the applet, we looked at $y = x^2 - 3$ This vertically shifted the graph of $f(x) = x^2$ down by 3. What about the graph of $g(x) = (x - 3)^2$ We are still working with the squaring function $f(x) = x^2$ What is different about $y = x^2 - 3$ and $g(x) = (x - 3)^2$? With $y = x^2 - 3$ we compute $f(x) = x^2$ first, then Subtract 3 With $g(x) = (x - 3)^2$ we Subtract 3 first, then square The way that we write this is: g(x) = f(x - 3)Because we first subtract (in the parentheses) then compute the squaring function $f(x) = x^2$

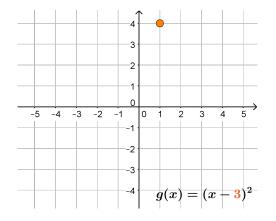
So, how does subtracting 3 *first* effect the graph of $f(x) = x^2$ We will sketch the graph of $g(x) = (x - 3)^2$ point-by-point

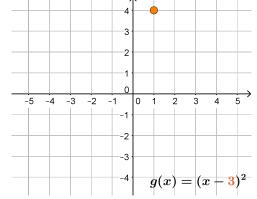

So, how does subtracting 3 *first* effect the graph of $f(x) = x^2$ We will sketch the graph of $g(x) = (x - 3)^2$ point-by-point

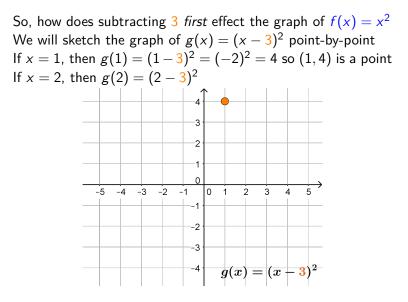

So, how does subtracting 3 *first* effect the graph of $f(x) = x^2$ We will sketch the graph of $g(x) = (x - 3)^2$ point-by-point If x = 1

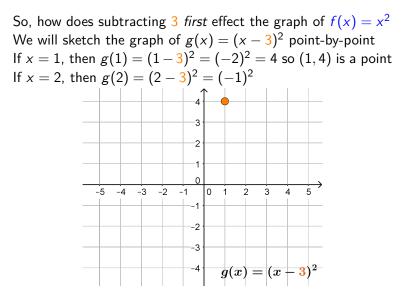

So, how does subtracting 3 *first* effect the graph of $f(x) = x^2$ We will sketch the graph of $g(x) = (x - 3)^2$ point-by-point If x = 1, then $g(1) = (1 - 3)^2$

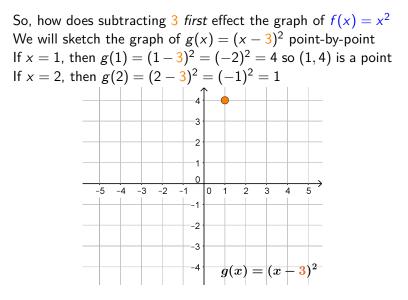

So, how does subtracting 3 *first* effect the graph of $f(x) = x^2$ We will sketch the graph of $g(x) = (x - 3)^2$ point-by-point If x = 1, then $g(1) = (1 - 3)^2 = (-2)^2$

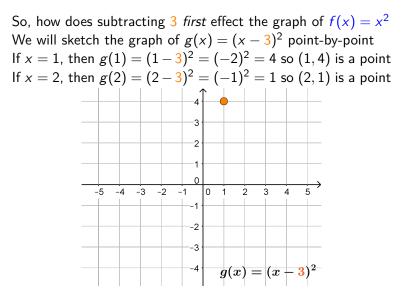

So, how does subtracting 3 *first* effect the graph of $f(x) = x^2$ We will sketch the graph of $g(x) = (x - 3)^2$ point-by-point If x = 1, then $g(1) = (1 - 3)^2 = (-2)^2 = 4$

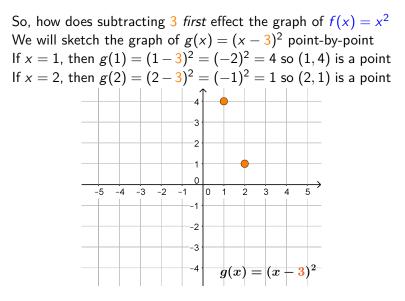

So, how does subtracting 3 *first* effect the graph of $f(x) = x^2$ We will sketch the graph of $g(x) = (x - 3)^2$ point-by-point If x = 1, then $g(1) = (1 - 3)^2 = (-2)^2 = 4$ so (1, 4) is a point

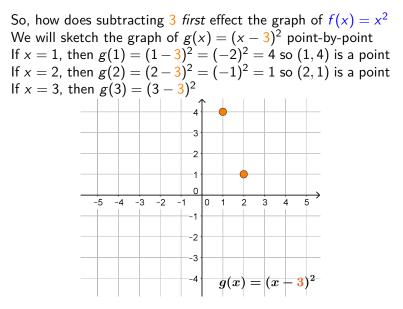


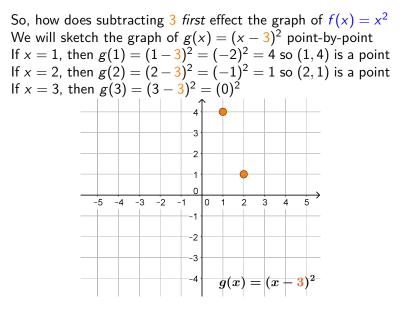

So, how does subtracting 3 *first* effect the graph of $f(x) = x^2$ We will sketch the graph of $g(x) = (x - 3)^2$ point-by-point If x = 1, then $g(1) = (1 - 3)^2 = (-2)^2 = 4$ so (1, 4) is a point

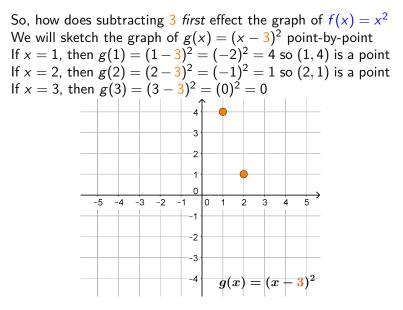


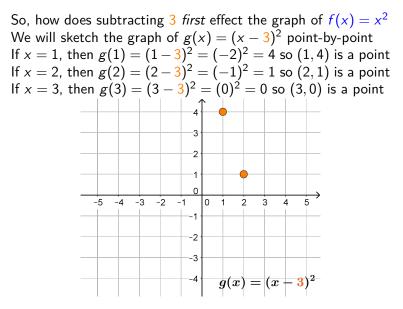

So, how does subtracting 3 *first* effect the graph of $f(x) = x^2$ We will sketch the graph of $g(x) = (x - 3)^2$ point-by-point If x = 1, then $g(1) = (1 - 3)^2 = (-2)^2 = 4$ so (1, 4) is a point If x = 2

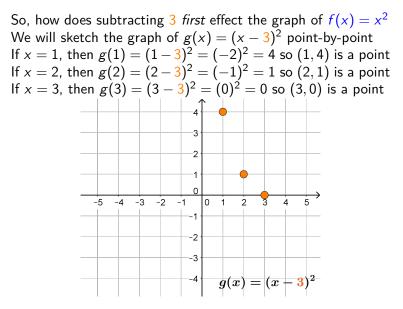











So, how does subtracting 3 first effect the graph of $f(x) = x^2$ We will sketch the graph of $g(x) = (x - 3)^2$ point-by-point If x = 1, then $g(1) = (1-3)^2 = (-2)^2 = 4$ so (1,4) is a point If x = 2, then $g(2) = (2-3)^2 = (-1)^2 = 1$ so (2,1) is a point If x = 33 2 Ο -5 -4 -3 -2 -1 0 2 3 -1 -2 -3 $g(x) = (x - 3)^2$ -4

