Horizontal Shifts

Horizontal Shifts

In the applet, we looked at $y=x^{2}-3$

Horizontal Shifts

In the applet, we looked at $y=x^{2}-3$
This vertically shifted the graph of $f(x)=x^{2}$ down by 3 .

Horizontal Shifts

In the applet, we looked at $y=x^{2}-3$
This vertically shifted the graph of $f(x)=x^{2}$ down by 3 .
What about the graph of $g(x)=(x-3)^{2}$

Horizontal Shifts

In the applet, we looked at $y=x^{2}-3$
This vertically shifted the graph of $f(x)=x^{2}$ down by 3 .
What about the graph of $g(x)=(x-3)^{2}$
We are still working with the squaring function $f(x)=x^{2}$

Horizontal Shifts

In the applet, we looked at $y=x^{2}-3$
This vertically shifted the graph of $f(x)=x^{2}$ down by 3 .
What about the graph of $g(x)=(x-3)^{2}$
We are still working with the squaring function $f(x)=x^{2}$
What is different about $y=x^{2}-3$ and $g(x)=(x-3)^{2}$?

Horizontal Shifts

In the applet, we looked at $y=x^{2}-3$
This vertically shifted the graph of $f(x)=x^{2}$ down by 3 .
What about the graph of $g(x)=(x-3)^{2}$
We are still working with the squaring function $f(x)=x^{2}$
What is different about $y=x^{2}-3$ and $g(x)=(x-3)^{2}$?
With $y=x^{2}-3$ we compute $f(x)=x^{2}$ first, then Subtract 3

Horizontal Shifts

In the applet, we looked at $y=x^{2}-3$
This vertically shifted the graph of $f(x)=x^{2}$ down by 3 .
What about the graph of $g(x)=(x-3)^{2}$
We are still working with the squaring function $f(x)=x^{2}$
What is different about $y=x^{2}-3$ and $g(x)=(x-3)^{2}$?
With $y=x^{2}-3$ we compute $f(x)=x^{2}$ first, then Subtract 3
With $g(x)=(x-3)^{2}$ we Subtract 3 first, then square

Horizontal Shifts

In the applet, we looked at $y=x^{2}-3$
This vertically shifted the graph of $f(x)=x^{2}$ down by 3 .
What about the graph of $g(x)=(x-3)^{2}$
We are still working with the squaring function $f(x)=x^{2}$
What is different about $y=x^{2}-3$ and $g(x)=(x-3)^{2}$?
With $y=x^{2}-3$ we compute $f(x)=x^{2}$ first, then Subtract 3
With $g(x)=(x-3)^{2}$ we Subtract 3 first, then square
The way that we write this is: $g(x)=f(x-3)$
Because we first subtract (in the parentheses) then compute the squaring function $f(x)=x^{2}$

Horizontal Shifts

In the applet, we looked at $y=x^{2}-3$
This vertically shifted the graph of $f(x)=x^{2}$ down by 3 .
What about the graph of $g(x)=(x-3)^{2}$
We are still working with the squaring function $f(x)=x^{2}$
What is different about $y=x^{2}-3$ and $g(x)=(x-3)^{2}$?
With $y=x^{2}-3$ we compute $f(x)=x^{2}$ first, then Subtract 3
With $g(x)=(x-3)^{2}$ we Subtract 3 first, then square
The way that we write this is: $g(x)=f(x-3)$
Because we first subtract (in the parentheses) then compute the squaring function $f(x)=x^{2}$
So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$

Horizontal Shifts

In the applet, we looked at $y=x^{2}-3$
This vertically shifted the graph of $f(x)=x^{2}$ down by 3 .
What about the graph of $g(x)=(x-3)^{2}$
We are still working with the squaring function $f(x)=x^{2}$
What is different about $y=x^{2}-3$ and $g(x)=(x-3)^{2}$?
With $y=x^{2}-3$ we compute $f(x)=x^{2}$ first, then Subtract 3
With $g(x)=(x-3)^{2}$ we Subtract 3 first, then square
The way that we write this is: $g(x)=f(x-3)$
Because we first subtract (in the parentheses) then compute the squaring function $f(x)=x^{2}$
So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

Horizontal Shifts

So, how does subtracting 3 first effect the graph of $f(x)=x^{2}$ We will sketch the graph of $g(x)=(x-3)^{2}$ point-by-point If $x=1$, then $g(1)=(1-3)^{2}=(-2)^{2}=4$ so $(1,4)$ is a point If $x=2$, then $g(2)=(2-3)^{2}=(-1)^{2}=1$ so $(2,1)$ is a point If $x=3$, then $g(3)=(3-3)^{2}=(0)^{2}=0$ so $(3,0)$ is a point

The graph of $g(x)=(x-3)^{2}$ is the graph of $f(x)=x^{2}$ shifted to the right by 3

