Vertical Stretching of Graphs

Vertical Stretching of Graphs

- Wessw that the graph of $y=2 \cdot f(x)$ is the graph of $y=f(x)$ stretched vertically by 2

Vertical Stretching of Graphs

- Wessw that the graph of $y=2 \cdot f(x)$ is the graph of $y=f(x)$ stretched vertically by 2
This is because we were multiplying by 2 to the formula for y

Vertical Stretching of Graphs

- We saw that the graph of $y=2 \cdot f(x)$ is the graph of $y=f(x)$ stretched vertically by 2
This is because we were multiplying by 2 to the formula for y What if instead we multiply by $\frac{1}{2}$?

Vertical Stretching of Graphs

- We saw that the graph of $y=2 \cdot f(x)$ is the graph of $y=f(x)$ stretched vertically by 2
This is because we were multiplying by 2 to the formula for y What if instead we multiply by $\frac{1}{2}$?
Example: Find the graph of

$$
y=\frac{1}{2} \cdot x^{2}
$$

Vertical Stretching of Graphs

- We sam that the graph of $y=2 \cdot f(x)$ is the graph of $y=f(x)$ stretched vertically by 2
This is because we were multiplying by 2 to the formula for y
What if instead we multiply by $\frac{1}{2}$?
Example: Find the graph of

$$
y=\frac{1}{2} \cdot x^{2}
$$

We will start with the basic graph: $y=x^{2}$

Vertical Stretching of Graphs

- Wessw that the graph of $y=2 \cdot f(x)$ is the graph of $y=f(x)$ stretched vertically by 2
This is because we were multiplying by 2 to the formula for y What if instead we multiply by $\frac{1}{2}$?
Example: Find the graph of

$$
y=\frac{1}{2} \cdot x^{2}
$$

We will start with the basic graph: $y=x^{2}$
At each point, the y value becomes $\frac{1}{2}$ times as big

Vertical Stretching of Graphs

- Wessw that the graph of $y=2 \cdot f(x)$ is the graph of $y=f(x)$ stretched vertically by 2
This is because we were multiplying by 2 to the formula for y What if instead we multiply by $\frac{1}{2}$?
Example: Find the graph of

$$
y=\frac{1}{2} \cdot x^{2}
$$

We will start with the basic graph: $y=x^{2}$
At each point, the y value becomes $\frac{1}{2}$ times as big

Vertical Stretching of Graphs

- Wessw that the graph of $y=2 \cdot f(x)$ is the graph of $y=f(x)$ stretched vertically by 2
This is because we were multiplying by 2 to the formula for y What if instead we multiply by $\frac{1}{2}$?
Example: Find the graph of

$$
y=\frac{1}{2} \cdot x^{2}
$$

We will start with the basic graph: $y=x^{2}$
At each point, the y value becomes $\frac{1}{2}$ times as big

Vertical Stretching of Graphs

- We sam that the graph of $y=2 \cdot f(x)$ is the graph of $y=f(x)$ stretched vertically by 2
This is because we were multiplying by 2 to the formula for y What if instead we multiply by $\frac{1}{2}$?
Example: Find the graph of

$$
y=\frac{1}{2} \cdot x^{2}
$$

We will start with the basic graph: $y=x^{2}$
At each point, the y value becomes $\frac{1}{2}$ times as big
Halving y at every point, gives the graph of $y=\frac{1}{2} \cdot x^{2}$

