Vertical Stretching of Graphs

Vertical Stretching of Graphs

- We saw that the graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted vertically by c

Vertical Stretching of Graphs

- We saw that the graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted vertically by c
This is because we were adding c to the formula for y

Vertical Stretching of Graphs

- We saw that the graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted vertically by c
This is because we were adding c to the formula for y What if instead of adding a number to $f(x)$ we multiply?

Vertical Stretching of Graphs

- We saw that the graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted vertically by c
This is because we were adding c to the formula for y What if instead of adding a number to $f(x)$ we multiply? Example: Find the graph of

$$
y=2 \cdot x^{2}
$$

Vertical Stretching of Graphs

- We saw that the graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted vertically by c
This is because we were adding c to the formula for y What if instead of adding a number to $f(x)$ we multiply? Example: Find the graph of

$$
y=2 \cdot x^{2}
$$

We will start with the basic graph: $y=x^{2}$

Vertical Stretching of Graphs

- Wesaw that the graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted vertically by c
This is because we were adding c to the formula for y What if instead of adding a number to $f(x)$ we multiply? Example: Find the graph of

$$
y=2 \cdot x^{2}
$$

We will start with the basic graph: $y=x^{2}$
At each point, the y value becomes 2 times as big

Vertical Stretching of Graphs

- Wesaw that the graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted vertically by c
This is because we were adding c to the formula for y What if instead of adding a number to $f(x)$ we multiply? Example: Find the graph of

$$
y=2 \cdot x^{2}
$$

We will start with the basic graph: $y=x^{2}$
At each point, the y value becomes 2 times as big

Vertical Stretching of Graphs

- Wesaw that the graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted vertically by c
This is because we were adding c to the formula for y What if instead of adding a number to $f(x)$ we multiply? Example: Find the graph of

$$
y=2 \cdot x^{2}
$$

We will start with the basic graph: $y=x^{2}$
At each point, the y value becomes 2 times as big

Vertical Stretching of Graphs

- We saw that the graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted vertically by c
This is because we were adding c to the formula for y What if instead of adding a number to $f(x)$ we multiply? Example: Find the graph of

$$
y=2 \cdot x^{2}
$$

We will start with the basic graph: $y=x^{2}$
At each point, the y value becomes 2 times as big
Doubling y at every point, gives the graph of $y=2 \cdot x^{2}$

