Example: Sketch the graph of $y = -3\sqrt{x}$

Example: Sketch the graph of $y = -3\sqrt{x}$ Here, we want to start with the basic graph: $f(x) = \sqrt{x}$

Example: Sketch the graph of $y = -3\sqrt{x}$ Here, we want to start with the basic graph: $f(x) = \sqrt{x}$ Multiplying f(x) by 3 stretches the graph vertically by 3

Example: Sketch the graph of $y = -3\sqrt{x}$ Here, we want to start with the basic graph: $f(x) = \sqrt{x}$ • Multiplying f(x) by 3 stretches the graph vertically by 3 • Multiplying f(x) by -1 reflects the graph across the x-axis

Example: Sketch the graph of $y = -3\sqrt{x}$ Here, we want to start with the basic graph: $f(x) = \sqrt{x}$ • Multiplying f(x) by 3 stretches the graph vertically by 3 • Multiplying f(x) by -1 reflects the graph across the x-axis What about multiplying by -3?

Example: Sketch the graph of $y = -3\sqrt{x} = -1 \cdot 3\sqrt{x}$ Here, we want to start with the basic graph: $f(x) = \sqrt{x}$ • Multiplying f(x) by 3 stretches the graph vertically by 3 • Multiplying f(x) by -1 reflects the graph across the x-axis What about multiplying by -3? We know that $-3 = -1 \cdot 3$

Example: Sketch the graph of $y = -3\sqrt{x} = -1 \cdot 3\sqrt{x}$ Here, we want to start with the basic graph: $f(x) = \sqrt{x}$ • Multiplying f(x) by 3 stretches the graph vertically by 3 • Multiplying f(x) by -1 reflects the graph across the x-axis What about multiplying by -3? We know that $-3 = -1 \cdot 3$ so we reflect

Example: Sketch the graph of $y = -3\sqrt{x} = -1 \cdot 3\sqrt{x}$ Here, we want to start with the basic graph: $f(x) = \sqrt{x}$ • Multiplying f(x) by 3 stretches the graph vertically by 3 • Multiplying f(x) by -1 reflects the graph across the x-axis What about multiplying by -3?

We know that $-3 = -1 \cdot 3$ so we reflect and stretch

Example: Sketch the graph of $y = -3\sqrt{x} = -1 \cdot 3\sqrt{x}$ Here, we want to start with the basic graph: $f(x) = \sqrt{x}$ • Multiplying f(x) by 3 stretches the graph vertically by 3 • Multiplying f(x) by -1 reflects the graph across the x-axis What about multiplying by -3? We know that $-3 = -1 \cdot 3$ so we reflect and stretch 9 $f(x) = \sqrt{x}$ 3 -4 -3 -2 -1 -5 0 3 5 6 7 8 9 -3 -6 -9 Because $-3 = -1 \cdot 3 = 3 \cdot -1$ we could stretch

Example: Sketch the graph of $y = -3\sqrt{x} = -1 \cdot 3\sqrt{x}$ Here, we want to start with the basic graph: $f(x) = \sqrt{x}$ • Multiplying f(x) by 3 stretches the graph vertically by 3 • Multiplying f(x) by -1 reflects the graph across the x-axis What about multiplying by -3? We know that $-3 = -1 \cdot 3$ so we reflect and stretch 9 $f(x) = \sqrt{x}$ 3 -4 -3 -2 -1 -5 6 7 8 9 -3 -6 -9

Because $-3 = -1 \cdot 3 = 3 \cdot -1$ we could stretch then reflect

Example: Sketch the graph of $y = -3\sqrt{x} = -1 \cdot 3\sqrt{x}$ Here, we want to start with the basic graph: $f(x) = \sqrt{x}$ • Multiplying f(x) by 3 stretches the graph vertically by 3 • Multiplying f(x) by -1 reflects the graph across the x-axis What about multiplying by -3? We know that $-3 = -1 \cdot 3$ so we reflect and stretch 9 $f(x) = \sqrt{x}$ 3 -5 -4 -3 -2 -1 6 7 8 9 -3 -6 -9 $y = -3\sqrt{x}$

Because $-3 = -1 \cdot 3 = 3 \cdot -1$ we could stretch then reflect