Revisiting Odd Functions Algebraically

Revisiting Odd Functions Algebraically

- Like Even Functions we can understand Odd Functions algebraically

Revisiting Odd Functions Algebraically

Like Even Functions we can understand Odd Functions algebraically To do so, we will first look at how both reilecting across the x -axis and reifecting across the y-axis work together.

Revisiting Odd Functions Algebraically

Like Even Functions we can understand Odd Functions algebraically To do so, we will first look at how both reilecting across the x-axis and reflecting across the y-axis work together. We will start with the graph of a function $y=f(x)$

Revisiting Odd Functions Algebraically

Like Even Functions we can understand Odd Functions algebraically To do so, we will first look at how both reelecting across the x -axis and reflecting across the y-axis work together.
We will start with the graph of a function $y=f(x)$
The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis

Revisiting Odd Functions Algebraically

Like Even Functions we can understand Odd Functions algebraically To do so, we will first look at how both refilecting across the x -axis and reflecting across the y-axis work together.
We will start with the graph of a function $y=f(x)$
The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
If we now reflect $y=f(-x)$ across the x-axis we get the negative of this function which is $y=-f(-x)$

Revisiting Odd Functions Algebraically

Like Even Functions we can understand Odd Functions algebraically To do so, we will first look at how both refiecting across the xaxis and reflecting across the y-axis work together.
We will start with the graph of a function $y=f(x)$
The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
If we now reflect $y=f(-x)$ across the x-axis we get the negative of this function which is $y=-f(-x)$

Notice: the graph of $y=-f(-x)$ is the graph of $y=f(x)$ rotated around the origin

Revisiting Odd Functions Algebraically

Like Even Functions we can understand Odd Functions algebraically To do so, we will first look at how both and reflecting across the y-axis work together.
We will start with the graph of a function $y=f(x)$
The graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
If we now reflect $y=f(-x)$ across the x-axis we get the negative of this function which is $y=-f(-x)$

Notice: the graph of $y=-f(-x)$ is the graph of $y=f(x)$ rotated around the origin
Conclusion: A function is odd if $-f(-x)=f(x)$

Revisiting Odd Functions Algebraically

Revisiting Odd Functions Algebraically

The graph of $y=-f(-x)$ is the graph of $y=f(x)$ rotated around the origin

Revisiting Odd Functions Algebraically

The graph of $y=-f(-x)$ is the graph of $y=f(x)$ rotated around the origin
c We defined that a function $y=f(x)$ is called odd if it remains the same when we rotate around the origin

Revisiting Odd Functions Algebraically

The graph of $y=-f(-x)$ is the graph of $y=f(x)$ rotated around the origin
© We defined that a function $y=f(x)$ is called odd if it remains the same when we rotate around the origin

Conclusion: A function is odd if $-f(-x)=f(x)$

