Revisiting Even Functions Algebraically

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis $f(x)=x^{2}$ was our most studied example of an even function

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis $f(x)=x^{2}$ was our most studied example of an even function We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis
$f(x)=x^{2}$ was our most studied example of an even function
- We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
Putting these together, we can conclude:
A function $y=f(x)$ is even if $f(-x)=f(x)$

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis
$f(x)=x^{2}$ was our most studied example of an even function
- We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
Putting these together, we can conclude:
A function $y=f(x)$ is even if $f(-x)=f(x)$
This gives us an algebraic way to check a geometric concept

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis $f(x)=x^{2}$ was our most studied example of an even function -We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
Putting these together, we can conclude:
A function $y=f(x)$ is even if $f(-x)=f(x)$
This gives us an algebraic way to check a geometric concept

Let's check algebraically if $f(x)=x^{2}$ is even.

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis
$f(x)=x^{2}$ was our most studied example of an even function (We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
Putting these together, we can conclude:
A function $y=f(x)$ is even if $f(-x)=f(x)$
This gives us an algebraic way to check a geometric concept

Let's check algebraically if $f(x)=x^{2}$ is even.
So, let's see if $f(-x)=f(x)$

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis
$f(x)=x^{2}$ was our most studied example of an even function - We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
Putting these together, we can conclude:
A function $y=f(x)$ is even if $f(-x)=f(x)$
This gives us an algebraic way to check a geometric concept

Let's check algebraically if $f(x)=x^{2}$ is even.
So, let's see if $f(-x)=f(x)$
$f(-x)=$

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis
$f(x)=x^{2}$ was our most studied example of an even function - We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
Putting these together, we can conclude:
A function $y=f(x)$ is even if $f(-x)=f(x)$
This gives us an algebraic way to check a geometric concept

Let's check algebraically if $f(x)=x^{2}$ is even.
So, let's see if $f(-x)=f(x)$
$f(-x)=(-x)^{2}$

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis
$f(x)=x^{2}$ was our most studied example of an even function - We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
Putting these together, we can conclude:
A function $y=f(x)$ is even if $f(-x)=f(x)$
This gives us an algebraic way to check a geometric concept

Let's check algebraically if $f(x)=x^{2}$ is even.
So, let's see if $f(-x)=f(x)$
$f(-x)=(-x)^{2}=(-x) \cdot(-x)$

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis
$f(x)=x^{2}$ was our most studied example of an even function - We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
Putting these together, we can conclude:
A function $y=f(x)$ is even if $f(-x)=f(x)$
This gives us an algebraic way to check a geometric concept

Let's check algebraically if $f(x)=x^{2}$ is even.
So, let's see if $f(-x)=f(x)$
$f(-x)=(-x)^{2}=(-x) \cdot(-x)=x^{2}$

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis
$f(x)=x^{2}$ was our most studied example of an even function - We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
Putting these together, we can conclude:
A function $y=f(x)$ is even if $f(-x)=f(x)$
This gives us an algebraic way to check a geometric concept

Let's check algebraically if $f(x)=x^{2}$ is even.
So, let's see if $f(-x)=f(x)$
$f(-x)=(-x)^{2}=(-x) \cdot(-x)=x^{2}=f(x)$

Revisiting Even Functions Algebraically

- We defined that a function $y=f(x)$ is called even if it remains the same when we Reflect across the y-axis
$f(x)=x^{2}$ was our most studied example of an even function
- We saw that the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected across the y-axis
Putting these together, we can conclude:
A function $y=f(x)$ is even if $f(-x)=f(x)$
This gives us an algebraic way to check a geometric concept

Let's check algebraically if $f(x)=x^{2}$ is even.
So, let's see if $f(-x)=f(x)$
$f(-x)=(-x)^{2}=(-x) \cdot(-x)=x^{2}=f(x)$
Conclusion: Since $f(-x)=f(x)$ for the function $f(x)=x^{2}$, by our algebraic definition $f(x)=x^{2}$ is an even function.

