
Revisiting Even Functions Algebraically

We defined that a function y = f (x) is called even if it remains
the same when we Reflect across the y−axis
f (x) = x2 was our most studied example of an even function

We saw that the graph of y = f (−x) is the graph of y = f (x)
reflected across the y−axis
Putting these together, we can conclude:
A function y = f (x) is even if f (−x) = f (x)
This gives us an algebraic way to check a geometric concept

Let’s check algebraically if f (x) = x2 is even.
So, let’s see if f (−x) = f (x)

Conclusion: Since f (−x) = f (x) for the function f (x) = x2,
by our algebraic definition f (x) = x2 is an even function.
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