Symmetries of $f(x)=\sqrt[3]{x}$

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither Recall: A function whose graph is symmetric across the y-axis is called an even function.

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither Recall: A function whose graph is symmetric across the y-axis is called an even function.

A function whose graph is rotationally symmetric around the origin is called an odd function.

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither Recall: A function whose graph is symmetric across the y-axis is called an even function.

A function whose graph is rotationally symmetric around the origin is called an odd function.

To determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither, let's graph

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither Recall: A function whose graph is symmetric across the y-axis is called an even function.
What happens if we reflect across the y-axis?
A function whose graph is rotationally symmetric around the origin is called an odd function.

To determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither, let's graph

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither Recall: A function whose graph is symmetric across the y-axis is called an even function.
What happens if we reflect across the y-axis?
A function whose graph is rotationally symmetric around the origin is called an odd function.

To determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither, let's graph

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither Recall: A function whose graph is symmetric across the y-axis is called an even function.
What happens if we reflect across the y-axis?
This gives us a new graph, so $f(x)=\sqrt[3]{x}$ is not even. A function whose graph is rotationally symmetric around the origin is called an odd function.

To determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither, let's graph

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither Recall: A function whose graph is symmetric across the y-axis is called an even function.
What happens if we reflect across the y-axis?
This gives us a new graph, so $f(x)=\sqrt[3]{x}$ is not even. A function whose graph is rotationally symmetric around the origin is called an odd function.
What happens if we rotate around the origin?
To determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither, let's graph

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither Recall: A function whose graph is symmetric across the y-axis is called an even function.
What happens if we reflect across the y-axis?
This gives us a new graph, so $f(x)=\sqrt[3]{x}$ is not even. A function whose graph is rotationally symmetric around the origin is called an odd function.
What happens if we rotate around the origin?
To determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither, let's graph

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither Recall: A function whose graph is symmetric across the y-axis is called an even function.
What happens if we reflect across the y-axis?
This gives us a new graph, so $f(x)=\sqrt[3]{x}$ is not even.
A function whose graph is rotationally symmetric around the origin is called an odd function.
What happens if we rotate around the origin?
Rotating around the origin leaves the graph unchanged!
To determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither, let's graph

Symmetries of $f(x)=\sqrt[3]{x}$

Example: Determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither Recall: A function whose graph is symmetric across the y-axis is called an even function.
What happens if we reflect across the y-axis?
This gives us a new graph, so $f(x)=\sqrt[3]{x}$ is not even.
A function whose graph is rotationally symmetric around the origin is called an odd function.
What happens if we rotate around the origin?
Rotating around the origin leaves the graph unchanged!
To determine if $f(x)=\sqrt[3]{x}$ is even, odd, or neither, let's graph

So, $f(x)=\sqrt[3]{x}$ is an odd function.

