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Any function with an even exponent of the form: f(x) = x"
is symmetric across the y—axis

Definition: A function whose graph is symmetric across the
y—axis is called an even function.
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Any function with an odd exponent of the form: f(x) = x27*!
is rotationally symmetric around the origin
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Graphing f(x) = x° we see that it is, also.
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Any function with an odd exponent of the form: f(x) = x27*!
is rotationally symmetric around the origin

Definition: A function whose graph is rotationally symmetric
around the origin is called an odd function.
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