Symmetries of Functions

Symmetries of Functions

We saw that the squaring function $f(x)=x^{2}$ is symmetric across the y-axis.

Symmetries of Functions

We saw that the squaring function $f(x)=x^{2}$ is symmetric across the y-axis.

Symmetries of Functions

We saw that the squaring function $f(x)=x^{2}$ is symmetric across the y-axis.
Graphing $f(x)=x^{4}$ we see that it is symmetric, also.

Symmetries of Functions

We saw that the © squaring function $f(x)=x^{2}$ is symmetric across the y-axis.
Graphing $f(x)=x^{4}$ we see that it is symmetric, also. The graph of $f(x)=x^{0}=1$ is also symmetric across the y-axis

Symmetries of Functions

We saw that the © squaring function $f(x)=x^{2}$ is symmetric across the y-axis.
Graphing $f(x)=x^{4}$ we see that it is symmetric, also.
The graph of $f(x)=x^{0}=1$ is also symmetric across the y-axis

Any function with an even exponent of the form: $f(x)=x^{2 n}$ is symmetric across the y-axis

Symmetries of Functions

We saw that the squaring function $f(x)=x^{2}$ is symmetric across the y-axis.
Graphing $f(x)=x^{4}$ we see that it is symmetric, also.
The graph of $f(x)=x^{0}=1$ is also symmetric across the y-axis

Any function with an even exponent of the form: $f(x)=x^{2 n}$ is symmetric across the y-axis
Definition: A function whose graph is symmetric across the y-axis is called an even function.

Symmetries of Functions

Symmetries of Functions

We saw that the aubing function $f(x)=x^{3}$ is rotationally symmetric around the origin.

Symmetries of Functions

We saw that the aubing function $f(x)=x^{3}$ is rotationally symmetric around the origin.

Symmetries of Functions

We saw that the cubing function $f(x)=x^{3}$ is rotationally symmetric around the origin.
Graphing $f(x)=x^{5}$ we see that it is, also.

Symmetries of Functions

We saw that the cubing function $f(x)=x^{3}$ is rotationally symmetric around the origin.
Graphing $f(x)=x^{5}$ we see that it is, also.
The graph of $f(x)=x^{1}=x$ is also rotationally symmetric

Symmetries of Functions

We saw that the cubing function $f(x)=x^{3}$ is rotationally symmetric around the origin.
Graphing $f(x)=x^{5}$ we see that it is, also.
The graph of $f(x)=x^{1}=x$ is also rotationally symmetric

Any function with an odd exponent of the form: $f(x)=x^{2 n+1}$ is rotationally symmetric around the origin

Symmetries of Functions

We saw that the cubing function $f(x)=x^{3}$ is rotationally symmetric around the origin.
Graphing $f(x)=x^{5}$ we see that it is, also.
The graph of $f(x)=x^{1}=x$ is also rotationally symmetric

Any function with an odd exponent of the form: $f(x)=x^{2 n+1}$ is rotationally symmetric around the origin
Definition: A function whose graph is rotationally symmetric around the origin is called an odd function.

