We saw that the \bigcirc squaring function $f(x) = x^2$ is symmetric across the y-axis.

We saw that the \bigcirc squaring function $f(x) = x^2$ is symmetric across the y-axis.

We saw that the squaring function $f(x) = x^2$ is symmetric across the y-axis. Graphing $f(x) = x^4$ we see that it is symmetric, also.

We saw that the squaring function $f(x) = x^2$ is symmetric across the y-axis. Graphing $f(x) = x^4$ we see that it is symmetric, also. The graph of $f(x) = x^0 = 1$ is also symmetric across the y-axis

We saw that the squaring function $f(x) = x^2$ is symmetric across the y-axis. Graphing $f(x) = x^4$ we see that it is symmetric, also. The graph of $f(x) = x^0 = 1$ is also symmetric across the y-axis

Any function with an even exponent of the form: $f(x) = x^{2n}$ is symmetric across the *y*-axis

We saw that the squaring function $f(x) = x^2$ is symmetric across the y-axis. Graphing $f(x) = x^4$ we see that it is symmetric, also. The graph of $f(x) = x^0 = 1$ is also symmetric across the y-axis

Any function with an even exponent of the form: $f(x) = x^{2n}$ is symmetric across the *y*-axis

Definition: A function whose graph is symmetric across the y-axis is called an *even function*.

We saw that the \bigcirc cubing function $f(x) = x^3$ is rotationally symmetric around the origin.

We saw that the \bigcirc cubing function $f(x) = x^3$ is rotationally symmetric around the origin.

We saw that the \checkmark cubing function $f(x) = x^3$ is rotationally symmetric around the origin. Graphing $f(x) = x^5$ we see that it is, also.

We saw that the reduing function $f(x) = x^3$ is rotationally symmetric around the origin. Graphing $f(x) = x^5$ we see that it is, also. The graph of $f(x) = x^1 = x$ is also rotationally symmetric

We saw that the \bigcirc cubing function $f(x) = x^3$ is rotationally symmetric around the origin.

Graphing $f(x) = x^5$ we see that it is, also.

The graph of $f(x) = x^1 = x$ is also rotationally symmetric

Any function with an odd exponent of the form: $f(x) = x^{2n+1}$ is rotationally symmetric around the origin

We saw that the \bigcirc cubing function $f(x) = x^3$ is rotationally symmetric around the origin.

Graphing $f(x) = x^5$ we see that it is, also.

The graph of $f(x) = x^1 = x$ is also rotationally symmetric

Any function with an odd exponent of the form: $f(x) = x^{2n+1}$ is rotationally symmetric around the origin

Definition: A function whose graph is rotationally symmetric around the origin is called an <u>odd function</u>.