Vertical Line Test

Vertical Line Test

- We saw that a graph of a line can be a function.

Vertical Line Test

- We saw that a graph of a line can be a function.

Are all lines functions?

Vertical Line Test

- Wessw that a graph of a line can be a function.

Are all lines functions?
Let's look at the graph of a generic line to figure this out.

Vertical Line Test

- We sam that a graph of a line can be a function. Are all lines functions?
Let's look at the graph of a generic line to figure this out. If we pick a random x value, how many ordered pairs are there with that x-value?

Vertical Line Test

- We sam that a graph of a line can be a function.

Are all lines functions?
Let's look at the graph of a generic line to figure this out. If we pick a random x value, how many ordered pairs are there with that x-value?
i.e. how many points on the line have that x-value?

Vertical Line Test

- We sam that a graph of a line can be a function.

Are all lines functions?
Let's look at the graph of a generic line to figure this out. If we pick a random x value, how many ordered pairs are there with that x-value?
i.e. how many points on the line have that x-value?

Let's look at all of the points on the plane with that x-value

Vertical Line Test

- We saw that a graph of a line can be a function.

Are all lines functions?
Let's look at the graph of a generic line to figure this out. If we pick a random x value, how many ordered pairs are there with that x-value?
i.e. how many points on the line have that x-value?

Let's look at all of the points on the plane with that x-value How many times does this hit the graph?

Vertical Line Test

- We saw that a graph of a line can be a function.

Are all lines functions?
Let's look at the graph of a generic line to figure this out. If we pick a random x value, how many ordered pairs are there with that x-value?
i.e. how many points on the line have that x-value?

Let's look at all of the points on the plane with that x-value How many times does this hit the graph?
Since their is only one point with this x-value, it is a function

Vertical Line Test

- We saw that a graph of a line can be a function.

Are all lines functions?
Let's look at the graph of a generic line to figure this out. If we pick a random x value, how many ordered pairs are there with that x-value?
i.e. how many points on the line have that x-value?

Let's look at all of the points on the plane with that x-value How many times does this hit the graph?
Since their is only one point with this x-value, it is a function

Determining if a graph is a function like this is called the Vertical Line Test

Vertical Line Test

Vertical Line Test

We tried to make an argument that a generic line is a function

Vertical Line Test

We tried to make an argument that a generic line is a function Are all lines functions?

Vertical Line Test

We tried to make an argument that a generic line is a function Are all lines functions? Are there any exceptions?

Vertical Line Test

We tried to make an argument that a generic line is a function Are all lines functions?
Are there any exceptions?
What if we have a line with two points with the same x-value

Vertical Line Test

We tried to make an argument that a generic line is a function Are all lines functions?
Are there any exceptions?
What if we have a line with two points with the same x-value Let's say that x-value is: $x=c$

Vertical Line Test

We tried to make an argument that a generic line is a function Are all lines functions?
Are there any exceptions?
What if we have a line with two points with the same x-value Let's say that x-value is: $x=c$
With two points, we can determine the line through them

Vertical Line Test

We tried to make an argument that a generic line is a function Are all lines functions?
Are there any exceptions?
What if we have a line with two points with the same x-value Let's say that x-value is: $x=c$
With two points, we can determine the line through them
This is a vertical line!

Vertical Line Test

We tried to make an argument that a generic line is a function Are all lines functions?
Are there any exceptions?
What if we have a line with two points with the same x-value Let's say that x-value is: $x=c$
With two points, we can determine the line through them
This is a vertical line!
The equation of the line is: $x=c$

Conclusion: The only lines that are not functions are vertical

Vertical Line Test

Vertical Line Test

What if we include absolute values?

Vertical Line Test

What if we include absolute values?
In particular, is $y=|m x+b|$ a function?

Vertical Line Test

What if we include absolute values?
In particular, is $y=|m x+b|$ a function?

- We saw that if we start with $y=m x+b$

Vertical Line Test

What if we include absolute values?
In particular, is $y=|m x+b|$ a function?

- We saw that if we start with $y=m x+b$

Taking the absolute value of the left hand side: $y=|m x+b|$ Makes all y-values positive

Vertical Line Test

What if we include absolute values?
In particular, is $y=|m x+b|$ a function?

- We saw that if we start with $y=m x+b$

Taking the absolute value of the left hand side: $y=|m x+b|$ Makes all y-values positive
Is this a function?

Vertical Line Test

What if we include absolute values?
In particular, is $y=|m x+b|$ a function?

- We sam that if we start with $y=m x+b$

Taking the absolute value of the left hand side: $y=|m x+b|$ Makes all y-values positive
Is this a function?
Even though two points have the same y-value

Vertical Line Test

What if we include absolute values?
In particular, is $y=|m x+b|$ a function?

- We sam that if we start with $y=m x+b$

Taking the absolute value of the left hand side: $y=|m x+b|$ Makes all y-values positive
Is this a function?
Even though two points have the same y-value No two points have the same x-value

Vertical Line Test

What if we include absolute values?
In particular, is $y=|m x+b|$ a function?

- We saw that if we start with $y=m x+b$

Taking the absolute value of the left hand side: $y=|m x+b|$ Makes all y-values positive
Is this a function?
Even though two points have the same y-value No two points have the same x-value

Conclusion: $y=|m x+b|$ is a function

