Evaluating Basic Functions - $f(x)=x^{2}$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=2 \rightarrow f(2)=2^{2}$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=2 \rightarrow f(2)=2^{2}=4$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | 4 | | | | | |
| | | | | | | | | | |
| | | | | 2 | | | | | |
| | | | | 0 | | | | | |
| -4 | -2 | | 0 | | 2 | | | | |
| | | | | | | | | | |
| | | | | | | | | | |
| | | | | -2 | | | | | |

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

				4						
				2						
-4	-2		0		2					
				-2						

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

Evaluating Basic Functions $-f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{2}$

We have learned a lot about linear functions: $f(x)=m x+b$ Now we will start exploring to more interesting functions.
We will start by graphing

$$
f(x)=x^{2}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{2}=4$, so $(2,4)$ is a point
If $x=1 \rightarrow f(1)=1^{2}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{2}=1$, so $(-1,1)$ is a point

Note: This graph is symmetric across the x-axis

