Evaluating Basic Functions - $f(x)=x^{3}$

Evaluating Basic Functions - $f(x)=x^{3}$

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.

Evaluating Basic Functions $-f(x)=x^{3}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=x^{3}
$$

Evaluating Basic Functions $-f(x)=x^{3}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.

Evaluating Basic Functions $-f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$

Evaluating Basic Functions $-f(x)=x^{3}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=2$

Evaluating Basic Functions $-f(x)=x^{3}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=2 \rightarrow f(2)=2^{3}$

Evaluating Basic Functions $-f(x)=x^{3}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=2 \rightarrow f(2)=2^{3}=8$

Evaluating Basic Functions $-f(x)=x^{3}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point

Evaluating Basic Functions $-f(x)=x^{3}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point

Evaluating Basic Functions $-f(x)=x^{3}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point If $x=1$

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point If $x=1 \rightarrow f(1)=1^{3}$

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point If $x=-1$

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}$

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Note: This graph is not symmetric like $f(x)=x^{2}$

Evaluating Basic Functions - $f(x)=x^{3}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=x^{3}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=2 \rightarrow f(2)=2^{3}=8$, so $(2,8)$ is a point
If $x=1 \rightarrow f(1)=1^{3}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=(-1)^{3}=-1$, so $(-1,-1)$ is a point

Note: This graph is not symmetric like $f(x)=x^{2}$ But it is rotationally symmetric if rotate around the origin

