Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points.

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=8$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=8 \rightarrow f(8)=\sqrt[3]{8}$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$ If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point If $x=1$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points. We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point
If $x=-1$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=\sqrt[3]{-1}$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions. Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=\sqrt[3]{-1}=-1$

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=\sqrt[3]{-1}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=\sqrt[3]{-1}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=\sqrt[3]{-1}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=\sqrt[3]{-1}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=\sqrt[3]{-1}=-1$, so $(-1,-1)$ is a point

Evaluating Basic Functions $-f(x)=\sqrt[3]{x}$

We will continue exploring more interesting functions.
Now we will graph:

$$
f(x)=\sqrt[3]{x}
$$

To see the whole graph, let's start with some points.
We can find points by picking x-values, and finding $f(x)$
If $x=8 \rightarrow f(8)=\sqrt[3]{8}=2$, so $(8,2)$ is a point
If $x=1 \rightarrow f(1)=\sqrt[3]{1}=1$, so $(1,1)$ is a point
If $x=-1 \rightarrow f(-1)=\sqrt[3]{-1}=-1$, so $(-1,-1)$ is a point

Note: This graph rotationally symmetric like $f(x)=x^{3}$

