Evaluating Basic Functions

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x " We write " y is a function of x " as: $y=f(x)$

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "
We write " y is a function of x " as: $y=f(x)$
There is just one y-value for each x-value but what is it?

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "
We write " y is a function of x " as: $y=f(x)$
There is just one y-value for each x-value but what is it?
In this class, we will look at mathematical formulas that tell how to find the y-value for each x-value

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "
We write " y is a function of x " as: $y=f(x)$
There is just one y-value for each x-value but what is it?
In this class, we will look at mathematical formulas that tell how to find the y-value for each x-value
In fact, we've already done this without calling them functions:

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "
We write " y is a function of x " as: $y=f(x)$
There is just one y-value for each x-value but what is it?
In this class, we will look at mathematical formulas that tell how to find the y-value for each x-value
In fact, we've already done this without calling them functions:

$$
y=-2 x+4
$$

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "
We write " y is a function of x " as: $y=f(x)$
There is just one y-value for each x-value but what is it?
In this class, we will look at mathematical formulas that tell
how to find the y-value for each x-value
In fact, we've already done this without calling them functions:

$$
y=-2 x+4
$$

Since each x-value gave one y-value, this was a function. Although, we did not call them functions at the time.

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "
We write " y is a function of x " as: $y=f(x)$
There is just one y-value for each x-value but what is it?
In this class, we will look at mathematical formulas that tell how to find the y-value for each x-value
In fact, we've already done this without calling them functions:

$$
y=-2 x+4
$$

Since each x-value gave one y-value, this was a function. Although, we did not call them functions at the time. We were able to find those y-values by picking an x-value and evaluating the right hand side to find the y-value.

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "
We write " y is a function of x " as: $y=f(x)$
There is just one y-value for each x-value but what is it?
In this class, we will look at mathematical formulas that tell how to find the y-value for each x-value
In fact, we've already done this without calling them functions:

$$
y=-2 x+4
$$

Since each x-value gave one y-value, this was a function. Although, we did not call them functions at the time. We were able to find those y-values by picking an x-value and evaluating the right hand side to find the y-value.
Before: if $x=1$ then: $y=-2 \cdot 1+4=-2+4=2$; sol: $(1,2)$

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "
We write " y is a function of x " as: $y=f(x)$
There is just one y-value for each x-value but what is it?
In this class, we will look at mathematical formulas that tell how to find the y-value for each x-value
In fact, we've already done this without calling them functions:

$$
y=-2 x+4
$$

Since each x-value gave one y-value, this was a function. Although, we did not call them functions at the time. We were able to find those y-values by picking an x-value and evaluating the right hand side to find the y-value.
Before: if $x=1$ then: $y=-2 \cdot 1+4=-2+4=2$; sol: $(1,2)$ Now: $y=f(1)=-2 \cdot 1+4=-2+4=2 ; f(1)=2$

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "
We write " y is a function of x " as: $y=f(x)$
There is just one y-value for each x-value but what is it?
In this class, we will look at mathematical formulas that tell how to find the y-value for each x-value
In fact, we've already done this without calling them functions:

$$
y=-2 x+4
$$

Since each x-value gave one y-value, this was a function. Although, we did not call them functions at the time. We were able to find those y-values by picking an x-value and evaluating the right hand side to find the y-value.
Before: if $x=1$ then: $y=-2 \cdot 1+4=-2+4=2$; sol: $(1,2)$ Now: $y=f(1)=-2 \cdot 1+4=-2+4=2 ; f(1)=2$
This is called evaluating the function.

Evaluating Basic Functions

We saw that functions are sets of ordered pairs of numbers (x, y) so that no two ordered pairs have the same x-value This means that if we know the x-value of the ordered pair, there can be just one y-value.
So, the y-value of the pair depends on the x-value, which leads us to say " y is a function of x "
We write " y is a function of x " as: $y=f(x)$
There is just one y-value for each x-value but what is it?
In this class, we will look at mathematical formulas that tell how to find the y-value for each x-value
In fact, we've already done this without calling them functions:

$$
y=-2 x+4
$$

Since each x-value gave one y-value, this was a function.
Although, we did not call them functions at the time.
We were able to find those y-values by picking an x-value and evaluating the right hand side to find the y-value.
Before: if $x=1$ then: $y=-2 \cdot 1+4=-2+4=2$; sol: $(1,2)$
Now: $y=f(1)=-2 \cdot 1+4=-2+4=2 ; f(1)=2$
This is called evaluating the function.
Functions make what we've already been doing more concise!

