Graphing $y=|f(x)|$

Graphing $y=|f(x)|$

We saw how to graph the solutions to:

$$
y=|m x+b|
$$

Graphing $y=|f(x)|$

We saw how to graph the solutions to:

$$
y=|m x+b|
$$

To graph it, we first found the graph of: $y=m x+b$

Graphing $y=|f(x)|$

We saw how to graph the solutions to:

$$
y=|m x+b|
$$

To graph it, we first found the graph of: $y=m x+b$ What if we have a graph $y=f(x)$ which is not a line?

Graphing $y=|f(x)|$

We saw how to graph the solutions to:

$$
y=|m x+b|
$$

To graph it, we first found the graph of: $y=m x+b$ What if we have a graph $y=f(x)$ which is not a line? As with lines, the absolute value will make all negative y values become positive and all positive y values stay positive.

Graphing $y=|f(x)|$

We saw how to graph the solutions to:

$$
y=|m x+b|
$$

To graph it, we first found the graph of: $y=m x+b$ What if we have a graph $y=f(x)$ which is not a line? As with lines, the absolute value will make all negative y values become positive and all positive y values stay positive.

We can now graph the solutions to $y=|f(x)|$ for any function that we can graph $y=f(x)$

