Graphing Solutions to: $y=|4 x+2|$

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph:

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph: Example: Graph the solutions to:

$$
y=4 x+2
$$

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph: Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph: Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the
y-int: $x=0$

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph: Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the

$$
\begin{aligned}
& y \text {-int: } x=0 \\
& y=4 \cdot 0+2
\end{aligned}
$$

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph: Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the

$$
\begin{aligned}
& y \text {-int: } x=0 \\
& y=4 \cdot 0+2=2
\end{aligned}
$$

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph: Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the

$$
\begin{aligned}
& y \text {-int: } x=0 \\
& y=4 \cdot 0+2=2 \rightarrow(0,2)
\end{aligned}
$$

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph: Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the
y-int: $x=0$
$y=4 \cdot 0+2=2 \rightarrow(0,2)$
x-int: $y=0$

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph:
Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the
y-int: $x=0$
$y=4 \cdot 0+2=2 \rightarrow(0,2)$
x-int: $y=0$
$0=4 \cdot x+2$

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph:
Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the
y-int: $x=0$
$y=4 \cdot 0+2=2 \rightarrow(0,2)$
x-int: $y=0$
$0=4 \cdot x+2 \Leftrightarrow-2=4 x$

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph: Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the
y-int: $x=0$
$y=4 \cdot 0+2=2 \rightarrow(0,2)$
x-int: $y=0$
$0=4 \cdot x+2 \Leftrightarrow-2=4 x \Leftrightarrow x=-\frac{1}{2}$

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph: Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the
y-int: $x=0$
$y=4 \cdot 0+2=2 \rightarrow(0,2)$
x-int: $y=0$
$0=4 \cdot x+2 \Leftrightarrow-2=4 x \Leftrightarrow x=-\frac{1}{2} \rightarrow\left(-\frac{1}{2}, 0\right)$

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Graphing Solutions to: $y=|4 x+2|$

We will see how absolute values effect graphs of lines Before we bring in the absolute values, let's graph:
Example: Graph the solutions to:

$$
y=4 x+2
$$

To sketch the graph, we need to find the
y-int: $x=0$
$y=4 \cdot 0+2=2 \rightarrow(0,2)$
x-int: $y=0$
$0=4 \cdot x+2 \Leftrightarrow-2=4 x \Leftrightarrow x=-\frac{1}{2} \rightarrow\left(-\frac{1}{2}, 0\right)$
Using the intercepts, we can sketch the graph of the line

Graphing Solutions to: $y=|4 x+2|$

Example: Graph the solutions to:

$$
y=4 x+2
$$

Graphing Solutions to: $y=|4 x+2|$

Example: Graph the solutions to:

Graphing Solutions to: $y=|4 x+2|$

Example: Graph the solutions to:

How does the graph of $y=4 x+2$ help us graph:

$$
y=|4 x+2|
$$

Graphing Solutions to: $y=|4 x+2|$

Example: Graph the solutions to:

How does the graph of $y=4 x+2$ help us graph:

$$
y=|4 x+2|
$$

For $y=|4 x+2|$ all of the y-values must be positive.

Graphing Solutions to: $y=|4 x+2|$

Example: Graph the solutions to:

How does the graph of $y=4 x+2$ help us graph:

$$
y=|4 x+2|
$$

For $y=|4 x+2|$ all of the y-values must be positive. Remember, the part of the graph where y - values are positive is everything above the x-axis

Graphing Solutions to: $y=|4 x+2|$

Example: Graph the solutions to:

How does the graph of $y=4 x+2$ help us graph:

$$
y=|4 x+2|
$$

For $y=|4 x+2|$ all of the y-values must be positive. Remember, the part of the graph where y - values are positive is everything above the x-axis
Where the graph already has positive y-values is unchanged

Graphing Solutions to: $y=|4 x+2|$

Example: Graph the solutions to:

How does the graph of $y=4 x+2$ help us graph:

$$
y=|4 x+2|
$$

For $y=|4 x+2|$ all of the y-values must be positive. Remember, the part of the graph where y - values are positive is everything above the x-axis
Where the graph already has positive y-values is unchanged But anything below the x-axis is where $y<0$

Graphing Solutions to: $y=|4 x+2|$

Example: Graph the solutions to:
(

How does the graph of $y=4 x+2$ help us graph:

$$
y=|4 x+2|
$$

For $y=|4 x+2|$ all of the y-values must be positive. Remember, the part of the graph where y - values are positive is everything above the x-axis
Where the graph already has positive y-values is unchanged But anything below the x-axis is where $y<0$
Taking the absolute value will make this positive

Graphing Solutions to: $y=|4 x+2|$

Example: Graph the solutions to:

How does the graph of $y=4 x+2$ help us graph:

$$
y=|4 x+2|
$$

For $y=|4 x+2|$ all of the y-values must be positive. Remember, the part of the graph where y - values are positive is everything above the x-axis
Where the graph already has positive y-values is unchanged But anything below the x-axis is where $y<0$
Taking the absolute value will make this positive
These are the solutions to: $y=|4 x+2|$

