Reciprocal Fractions

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n What if n itself is a fraction? $n=\frac{a}{b}$

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}}
$$

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}}
$$

This is mess! We have a fraction in the denominator of our fraction!

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}}
$$

This is mess! We have a fraction in the denominator of our fraction! A fraction within a fraction is called a compound fraction

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}}
$$

This is mess! We have a fraction in the denominator of our fraction! A fraction within a fraction is called a compound fraction How can we make it less messy?

Reciprocal Fractions

- Recalli: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}}
$$

This is mess! We have a fraction in the denominator of our fraction! A fraction within a fraction is called a compound fraction How can we make it less messy?
In other words, how can we make the denominator not a fraction?

Reciprocal Fractions

- Recalli: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}}
$$

This is mess! We have a fraction in the denominator of our fraction!
A fraction within a fraction is called a compound fraction How can we make it less messy?
In other words, how can we make the denominator not a fraction?
Our denominator is a fraction because we are dividing by b

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}}
$$

This is mess! We have a fraction in the denominator of our fraction!
A fraction within a fraction is called a compound fraction How can we make it less messy?
In other words, how can we make the denominator not a fraction?
Our denominator is a fraction because we are dividing by b
To undo dividing by b, we can multiply by b on the bottom

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}} \cdot \bar{b}
$$

This is mess! We have a fraction in the denominator of our fraction!
A fraction within a fraction is called a compound fraction How can we make it less messy?
In other words, how can we make the denominator not a fraction?
Our denominator is a fraction because we are dividing by b
To undo dividing by b, we can multiply by b on the bottom

Reciprocal Fractions

- Recalli We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}} \cdot \frac{b}{b}
$$

This is mess! We have a fraction in the denominator of our fraction!
A fraction within a fraction is called a compound fraction How can we make it less messy?
In other words, how can we make the denominator not a fraction?
Our denominator is a fraction because we are dividing by b
To undo dividing by b, we can multiply by b on the bottom
As long as we multiply by b on top, also, we are multiplying by 1

Reciprocal Fractions

- Recali: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}} \cdot \frac{b}{b}=\frac{1 \cdot b}{\frac{a}{b} \cdot b}
$$

This is mess! We have a fraction in the denominator of our fraction!
A fraction within a fraction is called a compound fraction How can we make it less messy?
In other words, how can we make the denominator not a fraction?
Our denominator is a fraction because we are dividing by b
To undo dividing by b, we can multiply by b on the bottom
As long as we multiply by b on top, also, we are multiplying by 1

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}} \cdot \frac{b}{b}=\frac{1 \cdot b}{\frac{a}{b} \cdot b b}=\frac{b}{a}
$$

This is mess! We have a fraction in the denominator of our fraction!
A fraction within a fraction is called a compound fraction How can we make it less messy?
In other words, how can we make the denominator not a fraction?
Our denominator is a fraction because we are dividing by b
To undo dividing by b, we can multiply by b on the bottom
As long as we multiply by b on top, also, we are multiplying by 1

Reciprocal Fractions

- Recall: We defined $\frac{1}{n}$ as the reciprocal of n

What if n itself is a fraction? $n=\frac{a}{b}$
What is the reciprocal of a fraction?
The reciprocal of $n=\frac{a}{b}$ is:

$$
\frac{1}{n}=\frac{1}{\frac{a}{b}} \cdot \frac{b}{b}=\frac{1 \cdot b}{\frac{a}{b} \cdot b b}=\frac{b}{a}
$$

This is mess! We have a fraction in the denominator of our fraction!
A fraction within a fraction is called a compound fraction How can we make it less messy?
In other words, how can we make the denominator not a fraction?
Our denominator is a fraction because we are dividing by b
To undo dividing by b, we can multiply by b on the bottom
As long as we multiply by b on top, also, we are multiplying by 1
Conclusion: The reciprocal of $\frac{a}{b}$ is:

$$
\frac{1}{\frac{a}{b}}=\frac{b}{a}
$$

