• Recall: how we first defined fractions:

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$

 $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$

 $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$

For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2} = 1$

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$ $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2} = 1$ or 3 thirds: $3 \cdot \frac{1}{3} = 1$

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$ $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2} = 1$ or 3 thirds: $3 \cdot \frac{1}{3} = 1$ or 5 fifths: $5 \cdot \frac{1}{5} = 1$

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$

 $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$

For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2} = 1$ or 3 thirds: $3 \cdot \frac{1}{3} = 1$

or 5 fifths: $5 \cdot \frac{1}{5} = 1$

Note: Since there is no number x so that $0 \cdot x = 1$, we can't define $\frac{1}{0}$

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$

 $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$

For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2} = 1$

or 3 thirds:
$$3 \cdot \frac{1}{3} = 1$$

or 5 fifths:
$$5 \cdot \frac{1}{5} = 1$$

Note: Since there is no number x so that $0 \cdot x = 1$, we can't define $\frac{1}{0}$. We define $\frac{1}{n}$ as the reciprocal of n

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$

 $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$

For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2} = 1$

or 3 thirds:
$$3 \cdot \frac{1}{3} = 1$$

or 5 fifths: $5 \cdot \frac{1}{5} = 1$

Note: Since there is no number x so that $0 \cdot x = 1$, we can't define $\frac{1}{0}$. We define $\frac{1}{n}$ as the reciprocal of n

Since $\frac{1}{n}$ is a number, it can be multiplied by more than just *n* as above:

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$

 $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$

For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2} = 1$

or 3 thirds:
$$3 \cdot \frac{1}{3} = 1$$

or 5 fifths: $5 \cdot \frac{1}{5} = 1$

Note: Since there is no number x so that $0 \cdot x = 1$, we can't define $\frac{1}{0}$. We define $\frac{1}{n}$ as *the reciprocal of n* Since $\frac{1}{n}$ is a number, it can be multiplied by more than just *n* as above:

We can multiply $\frac{1}{n}$ by another number m

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$

 $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$

For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2} = 1$

or 3 thirds:
$$3 \cdot \frac{1}{3} = 1$$

or 5 fifths: $5 \cdot \frac{1}{5} = 1$

Note: Since there is no number x so that $0 \cdot x = 1$, we can't define $\frac{1}{0}$ We define $\frac{1}{n}$ as the reciprocal of n Since $\frac{1}{n}$ is a number, it can be multiplied by more than just n as above: We can multiply $\frac{1}{n}$ by another number m For numbers m and n we write:

$$m \cdot \frac{1}{n} = \frac{m}{n}$$

• Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$

 $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$

For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2} = 1$

or 3 thirds:
$$3 \cdot \frac{1}{3} = 1$$

or 5 fifths: $5 \cdot \frac{1}{5} = 1$

Note: Since there is no number x so that $0 \cdot x = 1$, we can't define $\frac{1}{0}$ We define $\frac{1}{n}$ as the reciprocal of n Since $\frac{1}{n}$ is a number, it can be multiplied by more than just n as above: We can multiply $\frac{1}{n}$ by another number m For numbers m and n we write:

$$m \cdot \frac{1}{n} = \frac{m}{n}$$
$$2 \cdot \frac{1}{5} = \frac{2}{5}$$

Example:

• Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write:

$$m \cdot \frac{1}{n} = \frac{m}{n}$$

• Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write:

 $m \cdot \frac{1}{n} = \frac{m}{n}$

But what if we multiply two fractions together?

• Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write:

$$m \cdot \frac{1}{n} = \frac{m}{n}$$

But what if we multiply two fractions together?

Let's start by understanding multiplication of our two original fractions:

Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{n} = \frac{m}{n}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$

Recalls how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{n} = \frac{m}{n}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$

Recalls how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{n} = \frac{m}{n}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$ And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m} = 1$

Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{m} = \frac{m}{m}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{-} \cdot \frac{1}{-}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$ And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m} = 1$ Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n

Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{m} = \frac{m}{m}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{-} \cdot \frac{1}{-}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$ And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m} = 1$ Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n $nm \cdot \frac{1}{m} \cdot \frac{1}{m} =$

Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{m} = \frac{m}{m}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{-} \cdot \frac{1}{-}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$ And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m} = 1$ Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n $nm \cdot \frac{1}{m} \cdot \frac{1}{m} = n \cdot \frac{m}{m} \cdot \frac{1}{m}$

Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{2} = \frac{m}{2}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{-} \cdot \frac{1}{-}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$ And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m} = 1$ Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n $n\mathbf{m} \cdot \frac{1}{n} \cdot \frac{1}{n} = n \cdot \frac{\mathbf{m}}{n} \cdot \frac{1}{n} = n \cdot 1 \cdot \frac{1}{n}$

Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{2} = \frac{m}{2}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{-} \cdot \frac{1}{-}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$ And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m} = 1$ Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n $nm \cdot \frac{1}{m} \cdot \frac{1}{n} = n \cdot \frac{m}{m} \cdot \frac{1}{n} = n \cdot 1 \cdot \frac{1}{n} = n \cdot \frac{1}{n}$

Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{2} = \frac{m}{2}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{-} \cdot \frac{1}{-}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$ And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m} = 1$ Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n $nm \cdot \frac{1}{m} \cdot \frac{1}{n} = n \cdot \frac{m}{m} \cdot \frac{1}{n} = n \cdot 1 \cdot \frac{1}{n} = n \cdot \frac{1}{n} = 1$

Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{2} = \frac{m}{2}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{-} \cdot \frac{1}{-}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$ And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m} = 1$ Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n $n\underline{m} \cdot \frac{1}{\underline{m}} \cdot \frac{1}{\underline{n}} = n \cdot \frac{\underline{m}}{\underline{m}} \cdot \frac{1}{\underline{n}} = n \cdot 1 \cdot \frac{1}{\underline{n}} = n \cdot \frac{1}{\underline{n}} = 1$ This means $\frac{1}{2} \cdot \frac{1}{2}$ is a number so that $nm \cdot \frac{1}{2} \cdot \frac{1}{2} = 1$

Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{2} = \frac{m}{2}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{-} \cdot \frac{1}{-}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$ And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m} = 1$ Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n $nm \cdot \frac{1}{m} \cdot \frac{1}{n} = n \cdot \frac{m}{m} \cdot \frac{1}{n} = n \cdot 1 \cdot \frac{1}{n} = n \cdot \frac{1}{n} = 1$ This means $\frac{1}{n} \cdot \frac{1}{n}$ is a number so that $nm \cdot \frac{1}{n} \cdot \frac{1}{n} = 1$ Furthermore, a number that when multiplied by *nm* produces 1 is: $\frac{1}{mn}$

Recall: how we first defined fractions: $\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n} = 1$ For numbers *m* and *n* we write: $m \cdot \frac{1}{2} = \frac{m}{2}$ But what if we multiply two fractions together? Let's start by understanding multiplication of our two original fractions: What is the product of: $\frac{1}{-} \cdot \frac{1}{-}$ All we know about $\frac{1}{n} = 1$ is: $n \cdot \frac{1}{n} = 1$ And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m} = 1$ Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n $nm \cdot \frac{1}{m} \cdot \frac{1}{n} = n \cdot \frac{m}{m} \cdot \frac{1}{n} = n \cdot 1 \cdot \frac{1}{n} = n \cdot \frac{1}{n} \cdot \frac{1}{n} = 1$ This means $\frac{1}{n} \cdot \frac{1}{n}$ is a number so that $nm \cdot \frac{1}{n} \cdot \frac{1}{n} = 1$ Furthermore, a number that when multiplied by *nm* produces 1 is: $\frac{1}{mn}$ **Conclusion:** $\frac{1}{-} \cdot \frac{1}{-} = \frac{1}{-}$

We can rearrange this because multiplication is commutative.

We can rearrange this because multiplication is commutative.

We found that: $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$ and $m \cdot \frac{1}{m} = \frac{m}{m}$ m n mn Using these we can multiply fractions with the general form: $\frac{a}{m} \cdot \frac{b}{n} = a \cdot \frac{1}{m} \cdot b \cdot \frac{1}{n} = a \cdot b \cdot \frac{1}{m} \cdot \frac{1}{n} = a \cdot b \cdot \frac{1}{m \cdot n} = \frac{a \cdot b}{m \cdot n}$ We can rearrange this because multiplication is commutative. **Conclusion:** If we multiply two fractions $\frac{a}{a}$, $\frac{b}{a}$ we get:

 $\frac{a}{m} \cdot \frac{b}{n} = \frac{a \cdot b}{m \cdot n}$

We can rearrange this because multiplication is commutative.

Conclusion: If we multiply two fractions $\frac{a}{m}$, $\frac{b}{n}$ we get: $\frac{a}{m} \cdot \frac{b}{n} = \frac{a \cdot b}{m \cdot n}$

In other words, to multiply two fractions, we multiply across the top and across the bottom

We can rearrange this because multiplication is commutative.

Conclusion: If we multiply two fractions
$$\frac{a}{m}$$
, $\frac{b}{n}$ we get:
 $\frac{a}{m} \cdot \frac{b}{n} = \frac{a \cdot b}{m \cdot n}$

In other words, to multiply two fractions, we multiply across the top and across the bottom

Example:

$$\frac{2}{5} \cdot \frac{4}{3} = \frac{2 \cdot 4}{5 \cdot 3}$$

We can rearrange this because multiplication is commutative.

Conclusion: If we multiply two fractions
$$\frac{a}{m}$$
, $\frac{b}{n}$ we get:
 $\frac{a}{m} \cdot \frac{b}{n} = \frac{a \cdot b}{m \cdot n}$

In other words, to multiply two fractions, we multiply across the top and across the bottom

Example:

$$\frac{2}{5} \cdot \frac{4}{3} = \frac{2 \cdot 4}{5 \cdot 3} = \frac{8}{15}$$