Multiplying Fractions

Multiplying Fractions

- Recall: how we first defined fractions:

Multiplying Fractions

Recall: how we first defined fractions:
We started by defining just the fractions of the form: $\frac{1}{n}$

Multiplying Fractions

Recall: how we first defined fractions:
We started by defining just the fractions of the form: $\frac{1}{n}$
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$

Multiplying Fractions

Recall: how we first defined fractions:
We started by defining just the fractions of the form: $\frac{1}{n}$
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2}=1$

Multiplying Fractions

Recall: how we first defined fractions:
We started by defining just the fractions of the form: $\frac{1}{n}$
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2}=1$ or 3 thirds: $3 \cdot \frac{1}{3}=1$

Multiplying Fractions

Recall: how we first defined fractions:
We started by defining just the fractions of the form: $\frac{1}{n}$
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2}=1$
or 3 thirds: $3 \cdot \frac{1}{3}=1$
or 5 fifths: $5 \cdot \frac{1}{5}=1$

Multiplying Fractions

- Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2}=1$
or 3 thirds: $3 \cdot \frac{1}{3}=1$
or 5 fifths: $5 \cdot \frac{1}{5}=1$
Note: Since there is no number x so that $0 \cdot x=1$, we can't define $\frac{1}{0}$

Multiplying Fractions

Recall: how we first defined fractions:
We started by defining just the fractions of the form: $\frac{1}{n}$
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2}=1$
or 3 thirds: $3 \cdot \frac{1}{3}=1$
or 5 fifths: $5 \cdot \frac{1}{5}=1$
Note: Since there is no number x so that $0 \cdot x=1$, we can't define $\frac{1}{0}$ We define $\frac{1}{n}$ as the reciprocal of n

Multiplying Fractions

- Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2}=1$
or 3 thirds: $3 \cdot \frac{1}{3}=1$
or 5 fifths: $5 \cdot \frac{1}{5}=1$
Note: Since there is no number x so that $0 \cdot x=1$, we can't define $\frac{1}{0}$
We define $\frac{1}{n}$ as the reciprocal of n
Since $\frac{1}{n}$ is a number, it can be multiplied by more than just n as above:

Multiplying Fractions

- Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2}=1$
or 3 thirds: $3 \cdot \frac{1}{3}=1$
or 5 fifths: $5 \cdot \frac{1}{5}=1$
Note: Since there is no number x so that $0 \cdot x=1$, we can't define $\frac{1}{0}$
We define $\frac{1}{n}$ as the reciprocal of n
Since $\frac{1}{n}$ is a number, it can be multiplied by more than just n as above:
We can multiply $\frac{1}{n}$ by another number m

Multiplying Fractions

- Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2}=1$
or 3 thirds: $3 \cdot \frac{1}{3}=1$
or 5 fifths: $5 \cdot \frac{1}{5}=1$
Note: Since there is no number x so that $0 \cdot x=1$, we can't define $\frac{1}{0}$
We define $\frac{1}{n}$ as the reciprocal of n
Since $\frac{1}{n}$ is a number, it can be multiplied by more than just n as above:
We can multiply $\frac{1}{n}$ by another number m
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

Multiplying Fractions

- Recall: how we first defined fractions:

We started by defining just the fractions of the form: $\frac{1}{n}$
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For example: We need 2 halves to make 1 whole: $2 \cdot \frac{1}{2}=1$
or 3 thirds: $3 \cdot \frac{1}{3}=1$
or 5 fifths: $5 \cdot \frac{1}{5}=1$
Note: Since there is no number x so that $0 \cdot x=1$, we can't define $\frac{1}{0}$
We define $\frac{1}{n}$ as the reciprocal of n
Since $\frac{1}{n}$ is a number, it can be multiplied by more than just n as above:
We can multiply $\frac{1}{n}$ by another number m
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

Example:

$$
2 \cdot \frac{1}{5}=\frac{2}{5}
$$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$
And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m}=1$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$
And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m}=1$
Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$
And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m}=1$
Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n

$$
n m \cdot \frac{1}{m} \cdot \frac{1}{n}=
$$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$
And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m}=1$
Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n

$$
n m \cdot \frac{1}{m} \cdot \frac{1}{n}=n \cdot \frac{m}{m} \cdot \frac{1}{n}
$$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$
And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m}=1$
Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n

$$
n m \cdot \frac{1}{m} \cdot \frac{1}{n}=n \cdot \frac{m}{m} \cdot \frac{1}{n}=n \cdot 1 \cdot \frac{1}{n}
$$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$
And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m}=1$
Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n

$$
n m \cdot \frac{1}{m} \cdot \frac{1}{n}=n \cdot \frac{m}{m} \cdot \frac{1}{n}=n \cdot 1 \cdot \frac{1}{n}=n \cdot \frac{1}{n}
$$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$
And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m}=1$
Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n

$$
n m \cdot \frac{1}{m} \cdot \frac{1}{n}=n \cdot \frac{m}{m} \cdot \frac{1}{n}=n \cdot 1 \cdot \frac{1}{n}=n \cdot \frac{1}{n}=1
$$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$
And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m}=1$
Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n

$$
n m \cdot \frac{1}{m} \cdot \frac{1}{n}=n \cdot \frac{m}{m} \cdot \frac{1}{n}=n \cdot 1 \cdot \frac{1}{n}=n \cdot \frac{1}{n}=1
$$

This means $\frac{1}{m} \cdot \frac{1}{n}$ is a number so that $n m \cdot \frac{1}{m} \cdot \frac{1}{n}=1$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$
And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m}=1$
Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n

$$
n m \cdot \frac{1}{m} \cdot \frac{1}{n}=n \cdot \frac{m}{m} \cdot \frac{1}{n}=n \cdot 1 \cdot \frac{1}{n}=n \cdot \frac{1}{n}=1
$$

This means $\frac{1}{m} \cdot \frac{1}{n}$ is a number so that $n m \cdot \frac{1}{m} \cdot \frac{1}{n}=1$
Furthermore, a number that when multiplied by $n m$ produces 1 is: $\frac{1}{\mathrm{mn}}$

Multiplying Fractions

Recall: how we first defined fractions:
$\frac{1}{n}$ is defined as a number so that $n \cdot \frac{1}{n}=1$
For numbers m and n we write:

$$
m \cdot \frac{1}{n}=\frac{m}{n}
$$

But what if we multiply two fractions together?
Let's start by understanding multiplication of our two original fractions:
What is the product of: $\frac{1}{m} \cdot \frac{1}{n}$
All we know about $\frac{1}{n}=1$ is: $n \cdot \frac{1}{n}=1$
And all we know about $\frac{1}{m}$ is: $m \cdot \frac{1}{m}=1$
Let's use this info and multiply our mystery number $\frac{1}{m} \cdot \frac{1}{n}$ by m and n

$$
n m \cdot \frac{1}{m} \cdot \frac{1}{n}=n \cdot \frac{m}{m} \cdot \frac{1}{n}=n \cdot 1 \cdot \frac{1}{n}=n \cdot \frac{1}{n}=1
$$

This means $\frac{1}{m} \cdot \frac{1}{n}$ is a number so that $n m \cdot \frac{1}{m} \cdot \frac{1}{n}=1$
Furthermore, a number that when multiplied by $n m$ produces 1 is: $\frac{1}{\mathrm{mn}}$
Conclusion: $\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n}$

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Using these we can multiply fractions with the general form:

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Using these we can multiply fractions with the general form:
$\frac{a}{m} \cdot \frac{b}{n}=$

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Using these we can multiply fractions with the general form:

$$
\frac{a}{m} \cdot \frac{b}{n}=a \cdot \frac{1}{m} \cdot b \cdot \frac{1}{n}
$$

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Using these we can multiply fractions with the general form:

$$
\frac{a}{m} \cdot \frac{b}{n}=a \cdot \frac{1}{m} \cdot b \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m} \cdot \frac{1}{n}
$$

We can rearrange this because multiplication is commutative.

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Using these we can multiply fractions with the general form:

$$
\frac{a}{m} \cdot \frac{b}{n}=a \cdot \frac{1}{m} \cdot b \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m} \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m \cdot n}
$$

We can rearrange this because multiplication is commutative.

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Using these we can multiply fractions with the general form:

$$
\frac{a}{m} \cdot \frac{b}{n}=a \cdot \frac{1}{m} \cdot b \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m} \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m \cdot n}=\frac{a \cdot b}{m \cdot n}
$$

We can rearrange this because multiplication is commutative.

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Using these we can multiply fractions with the general form:

$$
\frac{a}{m} \cdot \frac{b}{n}=a \cdot \frac{1}{m} \cdot b \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m} \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m \cdot n}=\frac{a \cdot b}{m \cdot n}
$$

We can rearrange this because multiplication is commutative.
Conclusion: If we multiply two fractions $\frac{a}{m}, \frac{b}{n}$ we get:

$$
\frac{a}{m} \cdot \frac{b}{n}=\frac{a \cdot b}{m \cdot n}
$$

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Using these we can multiply fractions with the general form:

$$
\frac{a}{m} \cdot \frac{b}{n}=a \cdot \frac{1}{m} \cdot b \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m} \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m \cdot n}=\frac{a \cdot b}{m \cdot n}
$$

We can rearrange this because multiplication is commutative.
Conclusion: If we multiply two fractions $\frac{a}{m}, \frac{b}{n}$ we get:

$$
\frac{a}{m} \cdot \frac{b}{n}=\frac{a \cdot b}{m \cdot n}
$$

In other words, to multiply two fractions, we multiply across the top and across the bottom

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Using these we can multiply fractions with the general form:

$$
\frac{a}{m} \cdot \frac{b}{n}=a \cdot \frac{1}{m} \cdot b \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m} \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m \cdot n}=\frac{a \cdot b}{m \cdot n}
$$

We can rearrange this because multiplication is commutative.
Conclusion: If we multiply two fractions $\frac{a}{m}, \frac{b}{n}$ we get:

$$
\frac{a}{m} \cdot \frac{b}{n}=\frac{a \cdot b}{m \cdot n}
$$

In other words, to multiply two fractions, we multiply across the top and across the bottom

Example:

$$
\frac{2}{5} \cdot \frac{4}{3}=\frac{2 \cdot 4}{5 \cdot 3}
$$

Multiplying Fractions

We found that:

$$
\frac{1}{m} \cdot \frac{1}{n}=\frac{1}{m n} \quad \text { and } \quad m \cdot \frac{1}{n}=\frac{m}{n}
$$

Using these we can multiply fractions with the general form:

$$
\frac{a}{m} \cdot \frac{b}{n}=a \cdot \frac{1}{m} \cdot b \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m} \cdot \frac{1}{n}=a \cdot b \cdot \frac{1}{m \cdot n}=\frac{a \cdot b}{m \cdot n}
$$

We can rearrange this because multiplication is commutative.
Conclusion: If we multiply two fractions $\frac{a}{m}, \frac{b}{n}$ we get:

$$
\frac{a}{m} \cdot \frac{b}{n}=\frac{a \cdot b}{m \cdot n}
$$

In other words, to multiply two fractions, we multiply across the top and across the bottom

Example:

$$
\frac{2}{5} \cdot \frac{4}{3}=\frac{2 \cdot 4}{5 \cdot 3}=\frac{8}{15}
$$

