• Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$\frac{m}{n} = m \cdot \frac{1}{n}$$

▶ Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$

• Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that:

Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$

• Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$

So, we can rethink division by n as multiplication by the reciprocal $\frac{1}{n}$

▶ Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$

So, we can rethink division by *n* as multiplication by the reciprocal $\frac{1}{n}$. This will be helpful when we are dividing by complicated numbers!

Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by *n* as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{\frac{10}{2}}$

• Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by n as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we

can re-write this as:

• Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by n as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $\frac{\frac{3}{2}}{\frac{10}{9}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{9}}$

• Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by n as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $\frac{\frac{3}{2}}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{2}}$ We saw the reciprocal of a fraction switches the top and bottom

• Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by n as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{3}{2}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $\frac{\frac{3}{2}}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{9}{10}$ We saw the reciprocal of a fraction switches the top and bottom

• Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by n as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $\frac{\frac{3}{2}}{\frac{10}{10}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{9}} = \frac{3}{2} \cdot \frac{9}{10} = \frac{3 \cdot 9}{2 \cdot 10}$ We saw the reciprocal of a fraction switches the top and bottom

• Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by n as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $\frac{\frac{3}{2}}{\frac{10}{0}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{0}} = \frac{3}{2} \cdot \frac{9}{10} = \frac{3 \cdot 9}{2 \cdot 10} = \frac{27}{20}$ We saw the reciprocal of a fraction switches the top and bottom

 \bigcirc Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by n as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $\frac{\frac{3}{2}}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{9}{10} = \frac{3 \cdot 9}{2 \cdot 10} = \frac{27}{20}$ We saw the reciprocal of a fraction switches the top and bottom Example 2: $\frac{\frac{2}{3}}{\frac{10}{9}}$

 \bigcirc Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by n as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $-\frac{\frac{3}{2}}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{9}{10} = \frac{3 \cdot 9}{2 \cdot 10} = \frac{27}{20}$ We saw the reciprocal of a fraction switches the top and bottom Example 2: $\frac{\frac{2}{3}}{\frac{10}{2}} = \frac{2}{3} \cdot \frac{1}{\frac{10}{2}}$

 \bigcirc Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by *n* as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $-\frac{\frac{3}{2}}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{9}{10} = \frac{3 \cdot 9}{2 \cdot 10} = \frac{27}{20}$ We saw the reciprocal of a fraction switches the top and bottom Example 2: $-\frac{\frac{2}{3}}{\frac{10}{2}} = \frac{2}{3} \cdot \frac{1}{\frac{10}{6}} = \frac{2}{3} \cdot \frac{9}{10}$

 \bigcirc Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by *n* as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $-\frac{\frac{3}{2}}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{9}{10} = \frac{3 \cdot 9}{2 \cdot 10} = \frac{27}{20}$ We saw the reciprocal of a fraction switches the top and bottom Example 2: $-\frac{\frac{2}{3}}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{1}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{9}{10} = \frac{2 \cdot 9}{3 \cdot 10}$

 \bigcirc Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by *n* as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $-\frac{\frac{3}{2}}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{9}{10} = \frac{3 \cdot 9}{2 \cdot 10} = \frac{27}{20}$ We saw the reciprocal of a fraction switches the top and bottom Example 2: $-\frac{\frac{2}{3}}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{1}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{9}{10} = \frac{2 \cdot 9}{3 \cdot 10} = \frac{18}{30}$

 \bigcirc Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by *n* as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $-\frac{\frac{3}{2}}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{9}{10} = \frac{3 \cdot 9}{2 \cdot 10} = \frac{27}{20}$ We saw the reciprocal of a fraction switches the top and bottom Example 2: $-\frac{\frac{2}{3}}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{1}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{9}{10} = \frac{2 \cdot 9}{3 \cdot 10} = \frac{18}{30} = \frac{3 \cdot 6}{5 \cdot 6}$

 \bigcirc Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by *n* as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $-\frac{\frac{3}{2}}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{9}{10} = \frac{3 \cdot 9}{2 \cdot 10} = \frac{27}{20}$ We saw the reciprocal of a fraction switches the top and bottom Example 2: $-\frac{\frac{2}{3}}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{1}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{9}{10} = \frac{2 \cdot 9}{3 \cdot 10} = \frac{18}{30} = \frac{3 \cdot 6}{5 \cdot 6}$

 \bigcirc Recall: We defined a fraction $\frac{m}{n}$ to mean: $\frac{m}{n} = m \cdot \frac{1}{n}$ We define the *division* of two numbers as: $m \div n = \frac{m}{n}$ Combining these ideas, we have that: $m \div n = \frac{m}{n} = m \cdot \frac{1}{n}$ So, we can rethink division by *n* as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers! **Example 1:** Compute $-\frac{\frac{3}{2}}{10}$ Since we can replace division with multiplication by the reciprocal, we can re-write this as: $-\frac{\frac{3}{2}}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{1}{\frac{10}{2}} = \frac{3}{2} \cdot \frac{9}{10} = \frac{3 \cdot 9}{2 \cdot 10} = \frac{27}{20}$ We saw the reciprocal of a fraction switches the top and bottom Example 2: $-\frac{\frac{2}{3}}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{1}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{9}{10} = \frac{2 \cdot 9}{3 \cdot 10} = \frac{18}{30} = \frac{3 \cdot \cancel{0}}{5 \cdot \cancel{0}} = \frac{3}{5}$