## Dividing Fractions

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}
$$

- We saw the reciprocal of a fraction switches the top and bottom


## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}
$$

- We saw the reciprocal of a fraction switches the top and bottom


## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}=\frac{3 \cdot 9}{2 \cdot 10}
$$

- We sam the reciprocal of a fraction switches the top and bottom


## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}=\frac{3 \cdot 9}{2 \cdot 10}=\frac{27}{20}
$$

- We sam the reciprocal of a fraction switches the top and bottom


## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}=\frac{3 \cdot 9}{2 \cdot 10}=\frac{27}{20}
$$

- we sam the reciprocal of a fraction switches the top and bottom Example 2:

$$
\frac{\frac{2}{3}}{\frac{10}{9}}=
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}=\frac{3 \cdot 9}{2 \cdot 10}=\frac{27}{20}
$$

- we sam the reciprocal of a fraction switches the top and bottom Example 2:

$$
\frac{\frac{2}{3}}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{1}{\frac{10}{9}}
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}=\frac{3 \cdot 9}{2 \cdot 10}=\frac{27}{20}
$$

- we sam the reciprocal of a fraction switches the top and bottom Example 2:

$$
\frac{\frac{2}{3}}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{1}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{9}{10}
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}=\frac{3 \cdot 9}{2 \cdot 10}=\frac{27}{20}
$$

- we sam the reciprocal of a fraction switches the top and bottom Example 2:

$$
\frac{\frac{2}{3}}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{1}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{9}{10}=\frac{2 \cdot 9}{3 \cdot 10}
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}=\frac{3 \cdot 9}{2 \cdot 10}=\frac{27}{20}
$$

- We saw the reciprocal of a fraction switches the top and bottom Example 2:

$$
\frac{\frac{2}{3}}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{1}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{9}{10}=\frac{2 \cdot 9}{3 \cdot 10}=\frac{18}{30}
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}=\frac{3 \cdot 9}{2 \cdot 10}=\frac{27}{20}
$$

- we saw the reciprocal of a fraction switches the top and bottom Example 2:

$$
\frac{\frac{2}{3}}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{1}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{9}{10}=\frac{2 \cdot 9}{3 \cdot 10}=\frac{18}{30}=\frac{3 \cdot 6}{5 \cdot 6}
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}=\frac{3 \cdot 9}{2 \cdot 10}=\frac{27}{20}
$$

- we saw the reciprocal of a fraction switches the top and bottom Example 2:

$$
\frac{\frac{2}{3}}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{1}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{9}{10}=\frac{2 \cdot 9}{3 \cdot 10}=\frac{18}{30}=\frac{3 \cdot 6}{5 \cdot 6}
$$

## Dividing Fractions

- Recall: We defined a fraction $\frac{m}{n}$ to mean:

$$
\frac{m}{n}=m \cdot \frac{1}{n}
$$

We define the division of two numbers as:

$$
m \div n=\frac{m}{n}
$$

Combining these ideas, we have that:

$$
m \div n=\frac{m}{n}=m \cdot \frac{1}{n}
$$

So, we can rethink division by $n$ as multiplication by the reciprocal $\frac{1}{n}$ This will be helpful when we are dividing by complicated numbers!
Example 1: Compute $\frac{\frac{3}{2}}{\frac{10}{9}}$
Since we can replace division with multiplication by the reciprocal, we can re-write this as:

$$
\frac{\frac{3}{2}}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{1}{\frac{10}{9}}=\frac{3}{2} \cdot \frac{9}{10}=\frac{3 \cdot 9}{2 \cdot 10}=\frac{27}{20}
$$

- we sam the reciprocal of a fraction switches the top and bottom Example 2:

$$
\frac{\frac{2}{3}}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{1}{\frac{10}{9}}=\frac{2}{3} \cdot \frac{9}{10}=\frac{2 \cdot 9}{3 \cdot 10}=\frac{18}{30}=\frac{3 \cdot 6}{5 \cdot 6}=\frac{3}{5}
$$

