Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

$$
(a b)^{n}=
$$

Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

$$
(a b)^{n}=\underbrace{(a b) \cdot(a b) \cdots(a b)}_{n-\text { times }}
$$

Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

$$
(a b)^{n}=\underbrace{(a b) \cdot(a b) \cdots(a b)}_{n-\text { times }}
$$

Since we can multiply in any order, we can rearrange as:

Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

$$
(a b)^{n}=\underbrace{(a b) \cdot(a b) \cdots(a b)}_{n-\text { times }}
$$

Since we can multiply in any order, we can rearrange as:

$$
(a b)^{n}=\underbrace{a \cdot a \cdots a}_{n-\text { times }} \cdot \underbrace{b \cdot b \cdots b}_{n-\text { times }}
$$

Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

$$
(a b)^{n}=\underbrace{(a b) \cdot(a b) \cdots(a b)}_{n-\text { times }}
$$

Since we can multiply in any order, we can rearrange as:

$$
\begin{aligned}
(a b)^{n} & =\underbrace{a \cdot a \cdots a}_{n-\text { times }} \cdot \underbrace{b \cdot b \cdots b}_{n-\text { times }} \\
& =a^{n} \cdot b^{n}
\end{aligned}
$$

Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

$$
(a b)^{n}=\underbrace{(a b) \cdot(a b) \cdots(a b)}_{n-\text { times }}
$$

Since we can multiply in any order, we can rearrange as:

$$
\begin{aligned}
(a b)^{n} & =\underbrace{a \cdot a \cdots a}_{n-\text { times }} \cdot \underbrace{b \cdot b \cdots b}_{n-\text { times }} \\
& =a^{n} \cdot b^{n}
\end{aligned}
$$

Note: We are assuming here that n is a positive integer, but this result can be shown for n being any real number.

Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

$$
(a b)^{n}=\underbrace{(a b) \cdot(a b) \cdots(a b)}_{n-\text { times }}
$$

Since we can multiply in any order, we can rearrange as:

$$
\begin{aligned}
(a b)^{n} & =\underbrace{a \cdot a \cdots a}_{n-\text { times }} \cdot \underbrace{b \cdot b \cdots b}_{n-\text { times }} \\
& =a^{n} \cdot b^{n}
\end{aligned}
$$

Note: We are assuming here that n is a positive integer, but this result can be shown for n being any real number.
Example:

Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

$$
(a b)^{n}=\underbrace{(a b) \cdot(a b) \cdots(a b)}_{n-\text { times }}
$$

Since we can multiply in any order, we can rearrange as:

$$
\begin{aligned}
(a b)^{n} & =\underbrace{a \cdot a \cdots a}_{n-\text { times }} \cdot \underbrace{b \cdot b \cdots b}_{n-\text { times }} \\
& =a^{n} \cdot b^{n}
\end{aligned}
$$

Note: We are assuming here that n is a positive integer, but this result can be shown for n being any real number.
Example:

$$
(2 x)^{3}=
$$

Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

$$
(a b)^{n}=\underbrace{(a b) \cdot(a b) \cdots(a b)}_{n-\text { times }}
$$

Since we can multiply in any order, we can rearrange as:

$$
\begin{aligned}
(a b)^{n} & =\underbrace{a \cdot a \cdots a}_{n-\text { times }} \cdot \underbrace{b \cdot b \cdots b}_{n-\text { times }} \\
& =a^{n} \cdot b^{n}
\end{aligned}
$$

Note: We are assuming here that n is a positive integer, but this result can be shown for n being any real number.
Example:

$$
(2 x)^{3}=2^{3} x^{3}
$$

Distributive Law of Exponents over Multiplication

Combining multiplication and exponentiation:

$$
(a b)^{n}=\underbrace{(a b) \cdot(a b) \cdots(a b)}_{n-\text { times }}
$$

Since we can multiply in any order, we can rearrange as:

$$
\begin{aligned}
(a b)^{n} & =\underbrace{a \cdot a \cdots a}_{n-\text { times }} \cdot \underbrace{b \cdot b \cdots b}_{n-\text { times }} \\
& =a^{n} \cdot b^{n}
\end{aligned}
$$

Note: We are assuming here that n is a positive integer, but this result can be shown for n being any real number.
Example:

$$
\begin{aligned}
(2 x)^{3} & =2^{3} x^{3} \\
& =8 x^{3}
\end{aligned}
$$

