Summary of Power Rules of Exponents

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals. Although, our definition varied depending on m

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m \text {-times }}$
In General: For any numbers m and n :

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m \text {-times }}$
In General: For any numbers m and n :
(1) $x^{m} \cdot x^{n}=x^{(m+n)}$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
In General: For any numbers m and n :
(1) $x^{m} \cdot x^{n}=x^{(m+n)}$
(2) $\frac{x^{m}}{x^{n}}=x^{(m-n)}$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
In General: For any numbers m and n :
(1) $x^{m} \cdot x^{n}=x^{(m+n)}$
(2) $\frac{x^{m}}{x^{n}}=x^{(m-n)}$
(4) $x^{-m}=\frac{1}{x^{m}}$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m \text {-times }}$
In General: For any numbers m and n :
(1) $x^{m} \cdot x^{n}=x^{(m+n)}$
(4) $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
(2) $\frac{x^{m}}{x^{n}}=x^{(m-n)}$
(4) $x^{-m}=\frac{1}{x^{m}}$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
In General: For any numbers m and n :
$\rightarrow 1 x^{m} \cdot x^{n}=x^{(m+n)}$

$$
\begin{align*}
\left(x^{m}\right)^{n} & =x^{(m \cdot n)} \\
x^{1 / n} & =\sqrt[n]{x}
\end{align*}
$$

-2

$$
\frac{x^{m}}{x^{n}}=x^{(m-n)}
$$

-3 $x^{-m}=\frac{1}{x^{m}}$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
In General: For any numbers m and n :
-1 $x^{m} \cdot x^{n}=x^{(m+n)}$

$$
\begin{align*}
\left(x^{m}\right)^{n} & =x^{(m \cdot n)} \\
x^{1 / n} & =\sqrt[n]{x} \\
x^{m / n} & =\sqrt[n]{x}
\end{align*}
$$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m \text {-times }}$
In General: For any numbers m and n :
-1 $x^{m} \cdot x^{n}=x^{(m+n)}$

$$
\left(x^{m}\right)^{n}=x^{(m \cdot n)}
$$

- 2

$$
\begin{align*}
\frac{x^{m}}{x^{n}} & =x^{(m-n)} \\
x^{-m} & =\frac{1}{x^{m}}
\end{align*}
$$

$$
\quad x^{1 / n}=\sqrt[n]{x}
$$

$$
x^{m / n}=\sqrt[n]{x} m
$$

For rules $2+3$, we need $x \neq 0$; for 5 , we may need $x \geq 0$ to take roots

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
In General: For any numbers m and n :
-1 $x^{m} \cdot x^{n}=x^{(m+n)}$

$$
\left(x^{m}\right)^{n}=x^{(m \cdot n)}
$$

$\rightarrow 2$

$$
\begin{align*}
\frac{x^{m}}{x^{n}} & =x^{(m-n)} \\
x^{-m} & =\frac{1}{x^{m}}
\end{align*}
$$

$$
x^{1 / n}=\sqrt[n]{x}
$$

$$
x^{m / n}=\sqrt[n]{x^{m}}
$$

For rules $2+3$, we need $x \neq 0$; for 5 , we may need $x \geq 0$ to take roots 2 allows us to define $x^{0}=1$ for $x \neq 0$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
In General: For any numbers m and n :
-1 $x^{m} \cdot x^{n}=x^{(m+n)}$
$\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

- 2

$$
\frac{x^{m}}{x^{n}}=x^{(m-n)}
$$

$$
\quad x^{1 / n}=\sqrt[n]{x}
$$

$$
\text { (3) } \quad x^{-m}=\frac{1}{x^{m}}
$$

$>4+5$

$$
x^{m / n}=\sqrt[n]{x} m
$$

For rules $2+3$, we need $x \neq 0$; for 5 , we may need $x \geq 0$ to take roots 2 allows us to define $x^{0}=1$ for $x \neq 0$
3 allows us to define exponents for negative integers

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
In General: For any numbers m and n :
$\rightarrow 1 x^{m} \cdot x^{n}=x^{(m+n)}$

$$
\begin{align*}
\left(x^{m}\right)^{n} & =x^{(m \cdot n)} \\
x^{1 / n} & =\sqrt[n]{x} \\
x^{m / n} & =\sqrt[n]{x^{m}}
\end{align*}
$$

$>4+5$

For rules $2+3$, we need $x \neq 0$; for 5 , we may need $x \geq 0$ to take roots 2 allows us to define $x^{0}=1$ for $x \neq 0$
3 allows us to define exponents for negative integers
5 allow us to define exponents for fractions of the form $\frac{1}{n}$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
In General: For any numbers m and n :
$\rightarrow 1 x^{m} \cdot x^{n}=x^{(m+n)}$

$$
\begin{align*}
\left(x^{m}\right)^{n} & =x^{(m \cdot n)} \\
x^{1 / n} & =\sqrt[n]{x} \\
x^{m / n} & =\sqrt[n]{x^{m}}
\end{align*}
$$

$\rightarrow 2$
©3 $x^{-m}=\frac{1}{x^{m}}$
For rules $2+3$, we need $x \neq 0$; for 5 , we may need $x \geq 0$ to take roots 2 allows us to define $x^{0}=1$ for $x \neq 0$
3 allows us to define exponents for negative integers
5 allow us to define exponents for fractions of the form $\frac{1}{n}$
$4+5$ combined allows us to define exponents for all fractions!

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all rationals.
Although, our definition varied depending on m
If $m>0$ is an integer then $x^{m}=\underbrace{x \cdots x}_{m \text {-times }}$
In General: For any numbers m and n :
-1 $x^{m} \cdot x^{n}=x^{(m+n)}$

$$
\frac{x^{m}}{x^{n}}=x^{(m-n)}
$$

$$
x^{-m}=\frac{1}{x^{m}}
$$

$$
\begin{align*}
\left(x^{m}\right)^{n} & =x^{(m \cdot n)} \\
x^{1 / n} & =\sqrt[n]{x} \\
x^{m / n} & =\sqrt[n]{x^{m}}
\end{align*}
$$

For rules $2+3$, we need $x \neq 0$; for 5 , we may need $x \geq 0$ to take roots 2 allows us to define $x^{0}=1$ for $x \neq 0$
3 allows us to define exponents for negative integers
5 allow us to define exponents for fractions of the form $\frac{1}{n}$
$4+5$ combined allows us to define exponents for all fractions!
It is fun to notice that our understanding of exponents followed the same progression as our understanding of number in the begining

