Summary of Power Rules of Exponents

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all integers.

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all integers.
Although, our definition varied depending on if m is positive, negative, or 0

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all integers.
Although, our definition varied depending on if m is positive, negative, or 0
If $m>0$ then $x^{m}=\underbrace{x \cdots x}_{m \text {-times }}$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all integers.
Although, our definition varied depending on if m is positive, negative, or 0
If $m>0$ then $x^{m}=\underbrace{x \cdots x}_{m \text {-times }}$
If $m=0$ then $x^{m}=1$ but we need $x \neq 0$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all integers.
Although, our definition varied depending on if m is positive, negative, or 0
If $m>0$ then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
If $m=0$ then $x^{m}=1$ but we need $x \neq 0$
The Power Rule we saw: $x^{-m}=\frac{1}{x^{m}}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all integers.
Although, our definition varied depending on if m is positive, negative, or 0
If $m>0$ then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
If $m=0$ then $x^{m}=1$ but we need $x \neq 0$
The Power Rule we saw: $x^{-m}=\frac{1}{x^{m}}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$
We also learned two other Power Rules about exponents.

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all integers.
Although, our definition varied depending on if m is positive, negative, or 0
If $m>0$ then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
If $m=0$ then $x^{m}=1$ but we need $x \neq 0$
The Power Rule we saw: $x^{-m}=\frac{1}{x^{m}}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$
We also learned two other Power Rules about exponents.
In General: For any numbers m and n :

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all integers.
Although, our definition varied depending on if m is positive, negative, or 0
If $m>0$ then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
If $m=0$ then $x^{m}=1$ but we need $x \neq 0$
The Power Rule we saw: $x^{-m}=\frac{1}{x^{m}}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$
We also learned two other Power Rules about exponents.
In General: For any numbers m and n :
1.

$$
x^{m} \cdot x^{n}=x^{(m+n)}
$$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all integers.
Although, our definition varied depending on if m is positive, negative, or 0
If $m>0$ then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
If $m=0$ then $x^{m}=1$ but we need $x \neq 0$
The Power Rule we saw: $x^{-m}=\frac{1}{x^{m}}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$
We also learned two other Power Rules about exponents.
In General: For any numbers m and n :
1.

$$
x^{m} \cdot x^{n}=x^{(m+n)}
$$

2.

$$
\frac{x^{m}}{x^{n}}=x^{(m-n)}
$$

Summary of Power Rules of Exponents

We have now defined exponents: x^{m} for all integers.
Although, our definition varied depending on if m is positive, negative, or 0
If $m>0$ then $x^{m}=\underbrace{x \cdots x}_{m-\text { times }}$
If $m=0$ then $x^{m}=1$ but we need $x \neq 0$
The Power Rule we saw: $x^{-m}=\frac{1}{x^{m}}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$
We also learned two other Power Rules about exponents.
In General: For any numbers m and n :
1.

$$
x^{m} \cdot x^{n}=x^{(m+n)}
$$

2.

$$
\begin{aligned}
& \frac{x^{m}}{x^{n}}=x^{(m-n)} \\
& x^{-m}=\frac{1}{x^{m}}
\end{aligned}
$$

