We have now defined exponents: \mathbf{x}^m for all integers.

We have now defined exponents: x^m for all integers. Although, our definition varied depending on if m is positive, negative, or 0

We have now defined exponents: x^m for all integers.

Although, our definition varied depending on if m is positive, negative, or 0

If m > 0 then $x^m = \underbrace{x \cdots x}_{m-times}$

We have now defined exponents: x^m for all integers.

Although, our definition varied depending on if m is positive, negative, or 0

If m > 0 then $x^m = \underbrace{x \cdots x}_{m-times}$

If m = 0 then $x^m = 1$ but we need $x \neq 0$

We have now defined exponents: x^m for all integers.

Although, our definition varied depending on if m is positive, negative, or 0

If m > 0 then $x^m = \underbrace{x \cdots x}_{m-times}$

If m = 0 then $x^m = 1$ but we need $x \neq 0$

The Power Rule we saw: $x^{-m} = \frac{1}{x^m}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$

We have now defined exponents: x^m for all integers.

Although, our definition varied depending on if m is positive, negative, or 0

If m > 0 then $x^m = \underbrace{x \cdots x}_{m-times}$

If m = 0 then $x^m = 1$ but we need $x \neq 0$

The Power Rule we saw: $x^{-m} = \frac{1}{x^m}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$ We also learned two other Power Rules about exponents.

We have now defined exponents: x^m for all integers.

Although, our definition varied depending on if m is positive, negative, or 0

If m > 0 then $x^m = \underbrace{x \cdots x}_{m-times}$

If m = 0 then $x^m = 1$ but we need $x \neq 0$

The Power Rule we saw: $x^{-m} = \frac{1}{x^m}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$ We also learned two other Power Rules about exponents. In General: For any numbers *m* and *n*:

We have now defined exponents: x^m for all integers.

Although, our definition varied depending on if m is positive, negative, or 0

If m > 0 then $x^m = \underbrace{x \cdots x}_{m-times}$

If m = 0 then $x^m = 1$ but we need $x \neq 0$

The Power Rule we saw: $x^{-m} = \frac{1}{x^m}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$ We also learned two other Power Rules about exponents. In General: For any numbers *m* and *n*: 1. $x^m \cdot x^n = x^{(m+n)}$

We have now defined exponents: x^m for all integers.

Although, our definition varied depending on if m is positive, negative, or 0

If m > 0 then $x^m = \underbrace{x \cdots x}_{m \to \infty}$ m-times

If m = 0 then $x^m = 1$ but we need $x \neq 0$

The Power Rule we saw: $x^{-m} = \frac{1}{x^m}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$ We also learned two other Power Rules about exponents. **In General:** For any numbers *m* and *n*: $\mathbf{x}^m \cdot \mathbf{x}^n = \mathbf{x}^{(m+n)}$

1.

2.
$$\frac{x^m}{x^n} = x^{(m-n)}$$

We have now defined exponents: x^m for all integers.

Although, our definition varied depending on if m is positive, negative, or 0

If m > 0 then $x^m = \underbrace{x \cdots x}_{m-times}$

If m = 0 then $x^m = 1$ but we need $x \neq 0$

The Power Rule we saw: $x^{-m} = \frac{1}{x^m}$ allows us to define exponents that are negative integers. Again here, we need $x \neq 0$ We also learned two other Power Rules about exponents. In General: For any numbers *m* and *n*:

 $1. x^m \cdot xⁿ = x^(m+n)$

2.
$$\frac{x^m}{x^n} = x^{(m-n)}$$

$$3. x^{-m} = \frac{1}{x^m}$$