
Power Rules of Exponents

At first we defined multiplication as repeated addition.
We said that A · B means A added to itself B times:

A · B = A + A + · · ·+ A︸ ︷︷ ︸
B−times

Multiplication makes it much less tedious to compute things like:

Now, what if we have repeated multiplication?

E
E
E
E

Just like with repeated addition, this is not hard but tedious
Like with addition, we invent an operation for repeated multiplication
Repeated multiplication is called Exponentiation
So, Exponentiation is to Multiplication as Multiplication is to Addition
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Just like with repeated addition, this is not hard but tedious
Like with addition, we invent an operation for repeated multiplication
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Power Rules of Exponents

In general: bm = b · b · · · b︸ ︷︷ ︸
m−times

We call b the base and m the exponent
Note: Our definition only makes sense if m is a positive integer
In other words: the exponent m must be a Natural Number

Now that we have defined an exponent, let’s explore!

212

212

But there is another way we could have computed this!
Computing this way allows us to compute just one exponent, at the end.
And there is nothing special about 4 here.

x2 · x3 = x · x︸︷︷︸
2−times

· x · x · x︸ ︷︷ ︸
3−times

= x5

In General: For any numbers m and n:

t︷︸︸︷
x2

x2︸︷︷︸
5
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Now we know what happens with Multiplication; what about Division?
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Note: Since we are dividing by xn, we need to make sure that
xn 6= 0

The only way that xn = 0 is if x = 0
So, this property only holds if x 6= 0
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In order to make this Power Rule hold, we define: x−n = 1
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So we now have exponents defined for ALL integers.
Notice: We followed the same order of defining exponents as we did
”inventing” numbers:

Following this progression, we will later include fractional exponents.
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