• We saw that we can define fractional exponents as:

 $x^{m/n} = \sqrt[n]{x^m}$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} =$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} = \sqrt{16}^3$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} = \sqrt{16}^3 = 4^3$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16}^3 = 4^3 = 64$$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16}^3 = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16^3} = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute

• We saw that we can define fractional exponents as:

 $x^{m/n} = \sqrt[n]{x^m}$

Example 1: Compute

 $16^{3/2} = \sqrt{16}^3 = 4^3 = 64$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} =$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16}^3 = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute

 $16^{3/4} = \sqrt[4]{16}^3$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16^3} = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute

 $16^{3/4} = \sqrt[4]{16}^3 = 2^3$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16^3} = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute

 $16^{3/4} = \sqrt[4]{16}^3 = 2^3 = 8$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} = \sqrt{16^3} = 4^3 = 64$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} = \sqrt{16}^3 = 4^3 = 64$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} = \sqrt{16^3} = 4^3 = 64$ Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16}^3 = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} =$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} = \sqrt{16^3} = 4^3 = 64$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16}^5$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} = \sqrt{16^3} = 4^3 = 64$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16^5} = 2^5$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} = \sqrt{16}^3 = 4^3 = 64$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16}^3 = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16^5} = 2^5 = 32$

We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} = \sqrt{16^3} = 4^3 = 64$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16^5} = 2^5 = 32$ Conclusion: $16^{5/4} = 32$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^m}$$

Example 1: Compute

 $16^{3/2} = \sqrt{16}^3 = 4^3 = 64$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16^5} = 2^5 = 32$ Conclusion: $16^{5/4} = 32$

Example 4: Compute

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^n}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16^3} = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16^5} = 2^5 = 32$ Conclusion: $16^{5/4} = 32$

Example 4: Compute $16^{6/4} =$

We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^n}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16}^3 = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16}^3 = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16^5} = 2^5 = 32$ Conclusion: $16^{5/4} = 32$

Example 4: Compute $16^{6/4} = \sqrt[4]{16^6}$

We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^n}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16^3} = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16^5} = 2^5 = 32$ Conclusion: $16^{5/4} = 32$

Example 4: Compute $16^{6/4} = \sqrt[4]{16^6} = 2^6$

We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^n}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16^3} = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16}^3 = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16^5} = 2^5 = 32$ Conclusion: $16^{5/4} = 32$

Example 4: Compute $16^{6/4} = \sqrt[4]{16^6} = 2^6 = 64$

We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^n}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16}^3 = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16^5} = 2^5 = 32$ Conclusion: $16^{5/4} = 32$

Example 4: Compute $16^{6/4} = \sqrt[4]{16^6} = 2^6 = 64$ Conclusion: $16^{6/4} = 64$

We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^n}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16}^3 = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute $16^{5/4} = \sqrt[4]{16^5} = 2^5 = 32$ Conclusion: $16^{5/4} = 32$

Example 4: Compute $16^{6/4} = \sqrt[4]{16^6} = 2^6 = 64$ Conclusion: $16^{6/4} = 64$ Notice: $16^{6/4} = 64 = 16^{3/2}$

• We saw that we can define fractional exponents as:

$$x^{m/n} = \sqrt[n]{x^n}$$

Example 1: Compute

$$16^{3/2} = \sqrt{16}^3 = 4^3 = 64$$

Conclusion: $16^{3/2} = 64$

Example 2: Compute $16^{3/4} = \sqrt[4]{16^3} = 2^3 = 8$ Conclusion: $16^{3/4} = 8$

Example 3: Compute

$$16^{5/4} = \sqrt[4]{16^5} = 2^5 = 32$$

Conclusion: $16^{5/4} = 32$

Example 4: Compute

$$16^{6/4} = \sqrt[4]{16}^6 = 2^6 = 64$$

Conclusion: $16^{6/4} = 64$

Notice: $16^{6/4} = 64 = 16^{3/2}$ This should not come as a surprise since $\frac{6}{4} = \frac{3}{2}$