More Power Rules of Exponents - Examples

More Power Rules of Exponents - Examples

-Wessaw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x^{m}}
$$

More Power Rules of Exponents - Examples

that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x^{m}}
$$

Example 1: Compute

$$
16^{3 / 2}=
$$

More Power Rules of Exponents - Examples

- we saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16^{3}}
$$

More Power Rules of Exponents - Examples

-Wessw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}
$$

More Power Rules of Exponents - Examples

-Wessw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

More Power Rules of Exponents - Examples

-Wessw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}{ }^{m}
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$

More Power Rules of Exponents - Examples

-Wessaw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}{ }^{m}
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

More Power Rules of Exponents - Examples

-We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion:

$$
16^{3 / 4}=8
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

More Power Rules of Exponents - Examples

- We sam that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}{ }^{m}
$$

Example 1: Compute

$$
16^{3 / 2}={\sqrt{16^{3}}=4^{3}=64}^{2}
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute
$16^{5 / 4}=$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}{ }^{m}
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}{ }^{m}
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}=32
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}{ }^{m}
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}=32
$$

Conclusion:

$$
16^{5 / 4}=32
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}{ }^{m}
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}=32
$$

Conclusion: $\quad 16^{5 / 4}=32$
Example 4: Compute

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x} m
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16^{3}}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}=32
$$

Conclusion: $\quad 16^{5 / 4}=32$
Example 4: Compute

$$
16^{6 / 4}=
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}
$$

Example 1: Compute

$$
16^{3 / 2}={\sqrt{16^{3}}=4^{3}=64}^{2}
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}=32
$$

Conclusion: $\quad 16^{5 / 4}=32$
Example 4: Compute

$$
16^{6 / 4}=\sqrt[4]{16}^{6}
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}
$$

Example 1: Compute

$$
16^{3 / 2}={\sqrt{16^{3}}=4^{3}=64}^{2}
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}=32
$$

Conclusion: $\quad 16^{5 / 4}=32$
Example 4: Compute

$$
16^{6 / 4}=\sqrt[4]{16}^{6}=2^{6}
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}
$$

Example 1: Compute

$$
16^{3 / 2}={\sqrt{16^{3}}=4^{3}=64}^{2}
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}=32
$$

Conclusion: $\quad 16^{5 / 4}=32$
Example 4: Compute

$$
16^{6 / 4}=\sqrt[4]{16}^{6}=2^{6}=64
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}
$$

Example 1: Compute

$$
16^{3 / 2}={\sqrt{16^{3}}=4^{3}=64}^{2}
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}=32
$$

Conclusion: $\quad 16^{5 / 4}=32$
Example 4: Compute

$$
16^{6 / 4}=\sqrt[4]{16}^{6}=2^{6}=64
$$

Conclusion: $\quad 16^{6 / 4}=64$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}^{m}
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}=32
$$

Conclusion: $\quad 16^{5 / 4}=32$
Example 4: Compute

$$
16^{6 / 4}=\sqrt[4]{16}^{6}=2^{6}=64
$$

Conclusion: $\quad 16^{6 / 4}=64$
Notice:

$$
16^{6 / 4}=64=16^{3 / 2}
$$

More Power Rules of Exponents - Examples

- We saw that we can define fractional exponents as:

$$
x^{m / n}=\sqrt[n]{x}
$$

Example 1: Compute

$$
16^{3 / 2}=\sqrt{16}^{3}=4^{3}=64
$$

Conclusion: $\quad 16^{3 / 2}=64$
Example 2: Compute

$$
16^{3 / 4}=\sqrt[4]{16^{3}}=2^{3}=8
$$

Conclusion: $\quad 16^{3 / 4}=8$
Example 3: Compute

$$
16^{5 / 4}=\sqrt[4]{16^{5}}=2^{5}=32
$$

Conclusion: $\quad 16^{5 / 4}=32$
Example 4: Compute

$$
16^{6 / 4}=\sqrt[4]{16}^{6}=2^{6}=64
$$

Conclusion:

$$
16^{6 / 4}=64
$$

Notice:

$$
16^{6 / 4}=64=16^{3 / 2}
$$

This should not come as a surprise since $\frac{6}{4}=\frac{3}{2}$

