More Power Rules of Exponents

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

More Power Rules of Exponents

Cwedefined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

We will use this to expand our definition of exponents to fractions!

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0 - We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0 - We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

More Power Rules of Exponents

C We defined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0 C Wessw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=
$$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0 - We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}
$$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x But this is something we learned before.

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We waw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x But this is something we learned before. A number that when we square it we get x is: \sqrt{x}

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x But this is something we learned before.
A number that when we square it we get x is: \sqrt{x}
Conclusion: $x^{1 / 2}=\sqrt{x}$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We waw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x But this is something we learned before.
A number that when we square it we get x is: \sqrt{x}
Conclusion: $x^{1 / 2}=\sqrt{x}$
We can, similarly do this for:

$$
\left(x^{1 / 3}\right)^{3}=
$$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We waw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x But this is something we learned before.
A number that when we square it we get x is: \sqrt{x}
Conclusion: $x^{1 / 2}=\sqrt{x}$
We can, similarly do this for:

$$
\left(x^{1 / 3}\right)^{3}=x^{3 \cdot 1 / 3}
$$

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x But this is something we learned before.
A number that when we square it we get x is: \sqrt{x}
Conclusion: $x^{1 / 2}=\sqrt{x}$
We can, similarly do this for:

$$
\left(x^{1 / 3}\right)^{3}=x^{3 \cdot 1 / 3}=x^{1}=x
$$

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x But this is something we learned before.
A number that when we square it we get x is: \sqrt{x}
Conclusion: $x^{1 / 2}=\sqrt{x}$
We can, similarly do this for:

$$
\left(x^{1 / 3}\right)^{3}=x^{3 \cdot 1 / 3}=x^{1}=x
$$

This means $x^{1 / 3}$ is a number that when we cube it we get x

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x But this is something we learned before.
A number that when we square it we get x is: \sqrt{x}
Conclusion: $x^{1 / 2}=\sqrt{x}$
We can, similarly do this for:

$$
\left(x^{1 / 3}\right)^{3}=x^{3 \cdot 1 / 3}=x^{1}=x
$$

This means $x^{1 / 3}$ is a number that when we cube it we get x
Conclusion: $x^{1 / 3}=\sqrt[3]{x}$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x But this is something we learned before.
A number that when we square it we get x is: \sqrt{x}
Conclusion: $x^{1 / 2}=\sqrt{x}$
We can, similarly do this for:

$$
\left(x^{1 / 3}\right)^{3}=x^{3 \cdot 1 / 3}=x^{1}=x
$$

This means $x^{1 / 3}$ is a number that when we cube it we get x
Conclusion: $x^{1 / 3}=\sqrt[3]{x}$
In General: $x^{1 / n}$ is a number that when raised to the $n^{\text {th }}$ power is x

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
We will use this to expand our definition of exponents to fractions!
To start, let's try to figure out what $x^{1 / 2}$ should mean:
For our Power Rule to hold:

$$
\left(x^{1 / 2}\right)^{2}=x^{2 \cdot 1 / 2}=x^{1}=x
$$

This means $x^{1 / 2}$ is a number that when we square it we get x But this is something we learned before.
A number that when we square it we get x is: \sqrt{x}
Conclusion: $x^{1 / 2}=\sqrt{x}$
We can, similarly do this for:

$$
\left(x^{1 / 3}\right)^{3}=x^{3 \cdot 1 / 3}=x^{1}=x
$$

This means $x^{1 / 3}$ is a number that when we cube it we get x
Conclusion: $x^{1 / 3}=\sqrt[3]{x}$
In General: $x^{1 / n}$ is a number that when raised to the $n^{\text {th }}$ power is x In other words, for any integer $n: x^{1 / n}=\sqrt[n]{x}$

More Power Rules of Exponents

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$
\rightarrow Recall: When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$
\rightarrow Recall: When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.
Next we invented fractions of the form $\frac{1}{n}$ on our way to all fractions $\frac{m}{n}$

More Power Rules of Exponents

CWedefined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$
\rightarrow Recall: When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.
Next we invented fractions of the form $\frac{1}{n}$ on our way to all fractions $\frac{m}{n}$
We are following the same progression with "inventing" exponents.

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$
Recall: When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.
Next we invented fractions of the form $\frac{1}{n}$ on our way to all fractions $\frac{m}{n}$
We are following the same progression with "inventing" exponents.
We just learned fractional exponents of the form $x^{1 / n}$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
We saw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$
In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$
Recall: When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.
Next we invented fractions of the form $\frac{1}{n}$ on our way to all fractions $\frac{m}{n}$
We are following the same progression with "inventing" exponents.
We just learned fractional exponents of the form $x^{1 / n}$
Next we will see how to have any fraction as an exponent!

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

- Wessw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$

- Recali: When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.
Next we invented fractions of the form $\frac{1}{n}$ on our way to all fractions $\frac{m}{n}$ We are following the same progression with "inventing" exponents.
We just learned fractional exponents of the form $x^{1 / n}$
Next we will see how to have any fraction as an exponent!
Using our Power Rule:

$$
\left(x^{1 / n}\right)^{m}=
$$

More Power Rules of Exponents

We defined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0

- Wessw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$

- Recali: When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.
Next we invented fractions of the form $\frac{1}{n}$ on our way to all fractions $\frac{m}{n}$ We are following the same progression with "inventing" exponents.
We just learned fractional exponents of the form $x^{1 / n}$
Next we will see how to have any fraction as an exponent!
Using our Power Rule:

$$
\left(x^{1 / n}\right)^{m}=x^{m \cdot 1 / n}
$$

More Power Rules of Exponents

We defined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0

- Wessw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$

- Recali: When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.
Next we invented fractions of the form $\frac{1}{n}$ on our way to all fractions $\frac{m}{n}$ We are following the same progression with "inventing" exponents.
We just learned fractional exponents of the form $x^{1 / n}$
Next we will see how to have any fraction as an exponent!
Using our Power Rule:

$$
\left(x^{1 / n}\right)^{m}=x^{m \cdot 1 / n}=x^{m / n}
$$

More Power Rules of Exponents

We defined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0

- Wessw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$

- Recali: When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.
Next we invented fractions of the form $\frac{1}{n}$ on our way to all fractions $\frac{m}{n}$ We are following the same progression with "inventing" exponents.
We just learned fractional exponents of the form $x^{1 / n}$
Next we will see how to have any fraction as an exponent!
Using our Power Rule:

$$
\sqrt[n]{x^{m}}=\left(x^{1 / n}\right)^{m}=x^{m \cdot 1 / n}=x^{m / n}
$$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

- Wessw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$
Recalli When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.
Next we invented fractions of the form $\frac{1}{n}$ on our way to all fractions $\frac{m}{n}$
We are following the same progression with "inventing" exponents.
We just learned fractional exponents of the form $x^{1 / n}$
Next we will see how to have any fraction as an exponent!
Using our Power Rule:

$$
\sqrt[n]{x^{m}}=\left(x^{1 / n}\right)^{m}=x^{m \cdot 1 / n}=x^{m / n}
$$

Conclusion: For any numbers n and m :

$$
x^{m / n}=\sqrt[n]{x^{m}}
$$

More Power Rules of Exponents

We defined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0

- Wessw the Power Rule: $\left(x^{m}\right)^{n}=x^{(m \cdot n)}$

In General: For any integer $n: x^{1 / n}=\sqrt[n]{x}$
Recalli When we started out inventing numbers, we started with the Natural Numbers, included 0, then negative integers.
Next we invented fractions of the form $\frac{1}{n}$ on our way to all fractions $\frac{m}{n}$ We are following the same progression with "inventing" exponents.
We just learned fractional exponents of the form $x^{1 / n}$
Next we will see how to have any fraction as an exponent!
Using our Power Rule:

$$
\sqrt[n]{x^{m}}=\left(x^{1 / n}\right)^{m}=x^{m \cdot 1 / n}=x^{m / n}
$$

Conclusion: For any numbers n and m :

$$
x^{m / n}=\sqrt[n]{x^{m}}
$$

We can now understand exponents for all fractions!

