More Power Rules of Exponents

More Power Rules of Exponents

We defined exponents: x^{m} for all integers.

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

We will use this to understand repeated exponents.

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

We will use this to understand repeated exponents.
Example: Simplify $\left(x^{2}\right)^{3}$

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

We will use this to understand repeated exponents.
Example: Simplify $\left(x^{2}\right)^{3}$
To do this, let's use our definition of an exponent that:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}
$$

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

We will use this to understand repeated exponents.
Example: Simplify $\left(x^{2}\right)^{3}$
To do this, let's use our definition of an exponent that:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=\underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }}
$$

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0
\rightarrow We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$
We will use this to understand repeated exponents.
Example: Simplify $\left(x^{2}\right)^{3}$
To do this, let's use our definition of an exponent that:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=\underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }}=x^{6}
$$

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

We will use this to understand repeated exponents.
Example: Simplify $\left(x^{2}\right)^{3}$
To do this, let's use our definition of an exponent that:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=\underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }}=x^{6}
$$

We can also simplify this using our Power Rule:

More Power Rules of Exponents

-Wedefined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

We will use this to understand repeated exponents.
Example: Simplify $\left(x^{2}\right)^{3}$
To do this, let's use our definition of an exponent that:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=\underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }}=x^{6}
$$

We can also simplify this using our Power Rule:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}
$$

More Power Rules of Exponents

-Wedefined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

We will use this to understand repeated exponents.
Example: Simplify $\left(x^{2}\right)^{3}$
To do this, let's use our definition of an exponent that:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=\underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }}=x^{6}
$$

We can also simplify this using our Power Rule:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=x^{\overbrace{2+2+2}^{3-\text { times }}}
$$

More Power Rules of Exponents

-Wedefined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

We will use this to understand repeated exponents.
Example: Simplify $\left(x^{2}\right)^{3}$
To do this, let's use our definition of an exponent that:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=\underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }}=x^{6}
$$

We can also simplify this using our Power Rule:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=x^{2+2+2}=x^{2 \cdot 3}
$$

More Power Rules of Exponents

-Wedefined exponents: x^{m} for all integers.
Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

We will use this to understand repeated exponents.
Example: Simplify $\left(x^{2}\right)^{3}$
To do this, let's use our definition of an exponent that:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=\underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }}=x^{6}
$$

We can also simplify this using our Power Rule:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=x^{\overbrace{2+2+2}^{3-\text { times }}}=x^{2 \cdot 3}=x^{6}
$$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

Our definition varied depending on if m is positive, negative, or 0

- We saw the Power Rule: $x^{m} \cdot x^{n}=x^{(m+n)}$

We will use this to understand repeated exponents.
Example: Simplify $\left(x^{2}\right)^{3}$
To do this, let's use our definition of an exponent that:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=\underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }} \cdot \underbrace{(x \cdot x)}_{2-\text { times }}=x^{6}
$$

We can also simplify this using our Power Rule:

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3 \text {-times }}=x^{2+2+2}=x^{2 \cdot 3}=x^{6}
$$

Simplifying with our definition is more basic and easier to understand, but looking at it the second way helps us learn a new Power Rule.

More Power Rules of Exponents

More Power Rules of Exponents

- Wedefined exponents: x^{m} for all integers.

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}=x^{2+2+2}=x^{2 \cdot 3}=x^{6}
$$

Simplifying with our definition is more basic and easier to understand, but looking at it the second way helps us learn a new Power Rule:

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}=x^{2+2+2}=x^{2 \cdot 3}=x^{6}
$$

Simplifying with our definition is more basic and easier to understand, but looking at it the second way helps us learn a new Power Rule:
For any integers m and n

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}=x^{2+2+2}=x^{2 \cdot 3}=x^{6}
$$

Simplifying with our definition is more basic and easier to understand, but looking at it the second way helps us learn a new Power Rule:
For any integers m and n

$$
\left(x^{m}\right)^{n}=\underbrace{\left(x^{m}\right) \cdot\left(x^{m}\right) \cdot\left(x^{m}\right)}_{n-\text { times }}
$$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=x^{2+2+2}=x^{2 \cdot 3}=x^{6}
$$

Simplifying with our definition is more basic and easier to understand, but looking at it the second way helps us learn a new Power Rule:
For any integers m and n

$$
\left(x^{m}\right)^{n}=\underbrace{\left(x^{m}\right) \cdot\left(x^{m}\right) \cdot\left(x^{m}\right)}_{n-\text { times }}=x^{\overbrace{m+m}^{m+m}}
$$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=x^{2+2+2}=x^{2 \cdot 3}=x^{6}
$$

Simplifying with our definition is more basic and easier to understand, but looking at it the second way helps us learn a new Power Rule:
For any integers m and n

$$
\left(x^{m}\right)^{n}=\underbrace{\left(x^{m}\right) \cdot\left(x^{m}\right) \cdot\left(x^{m}\right)}_{n-\text { times }}=x^{\overbrace{m+m+m}^{n-\text { times }}}=x^{(m \cdot n)}
$$

More Power Rules of Exponents

- We defined exponents: x^{m} for all integers.

$$
\left(x^{2}\right)^{3}=\underbrace{\left(x^{2}\right) \cdot\left(x^{2}\right) \cdot\left(x^{2}\right)}_{3-\text { times }}=x^{2+2+2}=x^{2 \cdot 3}=x^{6}
$$

Simplifying with our definition is more basic and easier to understand, but looking at it the second way helps us learn a new Power Rule:
For any integers m and n

$$
\left(x^{m}\right)^{n}=\underbrace{\left(x^{m}\right) \cdot\left(x^{m}\right) \cdot\left(x^{m}\right)}_{n \text {-times }}=x^{\overbrace{m+m+m}^{n-\text { times }}}=x^{(m \cdot n)}
$$

Leaving us with the result:

$$
\left(x^{m}\right)^{n}=x^{(m \cdot n)}
$$

