Solving Exponential Equations - Example 4

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

- We saw
that Exponential Functions are
- one-to-one

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

- We saw that Exponential Functions are

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

- We saw that Exponential Functions are

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

- We saw that Exponential Functions are

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

- We saw that Exponential Functions are onetoone

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 3 on the right

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

C We saw that Exponential Functions are onetoone
Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 3 on the right
Can we get the same base on both sides like we did in

- Example 3 ?

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

C We saw that Exponential Functions are onetoone
Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 3 on the right
Can we get the same base on both sides like we did in Example 3 ? Unfortunately, it is difficult to find a number a so that $3=2^{a}$

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

C We saw that Exponential Functions are onetoone
Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 3 on the right
Can we get the same base on both sides like we did in Example 3? Unfortunately, it is difficult to find a number a so that $3=2^{a}$ And it is similarly difficult to write 2 as a power of 3 .

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

CWe saw that Exponential Functions are oneto-one
Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 3 on the right
Can we get the same base on both sides like we did in Example 3 ? Unfortunately, it is difficult to find a number a so that $3=2^{a}$ And it is similarly difficult to write 2 as a power of 3 .
Since our only method of solving exponential equations relies on writing both sides in the same base, we are stuck!

Solving Exponential Equations - Example 4

Example: Find solutions to the equation:

$$
2^{(x+1)}=3^{x}
$$

CWe saw that Exponential Functions are oneto-one
Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 3 on the right
Can we get the same base on both sides like we did in Example 3 ?
Unfortunately, it is difficult to find a number a so that $3=2^{a}$
And it is similarly difficult to write 2 as a power of 3 .
Since our only method of solving exponential equations relies on writing both sides in the same base, we are stuck!
We need a new method!

