Solving Exponential Equations - Example 3

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are one to one

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are onetoone

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are one to-one

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are oneto one

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 4 on the right

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are onetoone

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 4 on the right
Can we get the same base on both sides?

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are onetoone

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 4 on the right
Can we get the same base on both sides?
Notice, we can write $4=2^{2}$

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 4 on the right
Can we get the same base on both sides?
Notice, we can write $4=2^{2}$
Which means we can write the right hand side as: $4^{x}=\left(2^{2}\right)^{x}$

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 4 on the right
Can we get the same base on both sides?
Notice, we can write $4=2^{2}$
Which means we can write the right hand side as: $4^{x}=\left(2^{2}\right)^{x}$

- Our Power Rule for compound exponents allows us to reduce this as: $2^{2 x}$

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are D one-to-one
Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 4 on the right
Can we get the same base on both sides?
Notice, we can write $4=2^{2}$
Which means we can write the right hand side as: $4^{x}=\left(2^{2}\right)^{x}$
- Our Power Rule for compound exponents allows us to reduce this as: $2^{2 x}$ Now we can write our eq with the same base $=2$ on both sides as:

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are \rightarrow one-to-one
Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 4 on the right
Can we get the same base on both sides?
Notice, we can write $4=2^{2}$
Which means we can write the right hand side as: $4^{x}=\left(2^{2}\right)^{x}$
- Our Power Rule for compound exponents allows us to reduce this as: $2^{2 x}$ Now we can write our eq with the same base $=2$ on both sides as:

$$
2^{(x+3)}=4^{x}=2^{2 x}
$$

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are

Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 4 on the right
Can we get the same base on both sides?
Notice, we can write $4=2^{2}$
Which means we can write the right hand side as: $4^{x}=\left(2^{2}\right)^{x}$

- Our Power Rule for compound exponents allows us to reduce this as: $2^{2 x}$ Now we can write our eq with the same base $=2$ on both sides as:

$$
2^{(x+3)}=4^{x}=2^{2 x}
$$

So, we get that the exponents must be the same:

$$
x+3=2 x
$$

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are D one-to-one
Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 4 on the right
Can we get the same base on both sides?
Notice, we can write $4=2^{2}$
Which means we can write the right hand side as: $4^{x}=\left(2^{2}\right)^{x}$
- Our Power Rule for compound exponents allows us to reduce this as: $2^{2 x}$ Now we can write our eq with the same base $=2$ on both sides as:

$$
2^{(x+3)}=4^{x}=2^{2 x}
$$

So, we get that the exponents must be the same:

$$
x+3=2 x
$$

Subtracting x from both sides we are left with: $x=3$

Solving Exponential Equations - Example 3

Example: Find solutions to the equation:

$$
2^{(x+3)}=4^{x}
$$

- We saw that Exponential Functions are D one-to-one
Which means that, if $c^{a}=c^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this we need to have the same base on both sides.
But we don't have the same base on both sides!
We have base 2 on left and 4 on the right
Can we get the same base on both sides?
Notice, we can write $4=2^{2}$
Which means we can write the right hand side as: $4^{x}=\left(2^{2}\right)^{x}$
- Our Power Ruie for compound exponents allows us to reduce this as: $2^{2 x}$ Now we can write our eq with the same base $=2$ on both sides as:

$$
2^{(x+3)}=4^{x}=2^{2 x}
$$

So, we get that the exponents must be the same:

$$
x+3=2 x
$$

Subtracting x from both sides we are left with: $x=3$
Conclusion: The solution to $2^{(x+3)}=4^{x}$ is $x=3$

