Solving Exponential Equations - Example 2

Solving Exponential Equations - Example 2

Example: Find solutions to the equation:

$$
2^{(x+1)}-2^{(3 x-7)}=0
$$

Solving Exponential Equations - Example 2

Example: Find solutions to the equation:

$$
2^{(x+1)}-2^{(3 x-7)}=0
$$

- We saw
that Exponential Functions are

Solving Exponential Equations - Example 2

Example: Find solutions to the equation:

$$
2^{(x+1)}-2^{(3 x-7)}=0
$$

- We saw that Exponential Functions are

Which means that, if $2^{a}=2^{b}$ then $a=b$ because two different exponents cannot output the same value

Solving Exponential Equations - Example 2

Example: Find solutions to the equation:

$$
2^{(x+1)}-2^{(3 x-7)}=0
$$

- We saw that Exponential Functions are

Which means that, if $2^{a}=2^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this, we need to write this equation as $2^{a}=2^{b}$

Solving Exponential Equations - Example 2

Example: Find solutions to the equation:

$$
2^{(x+1)}-2^{(3 x-7)}=0
$$

- We saw that Exponential Functions are

Which means that, if $2^{a}=2^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this, we need to write this equation as $2^{a}=2^{b}$
We can do this here by Adding $2^{(3 x-7)}$ to both sides giving:

Solving Exponential Equations - Example 2

Example: Find solutions to the equation:

$$
2^{(x+1)}-2^{(3 x-7)}=0
$$

- We saw that Exponential Functions are

Which means that, if $2^{a}=2^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this, we need to write this equation as $2^{a}=2^{b}$
We can do this here by Adding $2^{(3 x-7)}$ to both sides giving:

$$
2^{(x+1)}=2^{(3 x-7)}
$$

Solving Exponential Equations - Example 2

Example: Find solutions to the equation:

$$
2^{(x+1)}-2^{(3 x-7)}=0
$$

- We saw that Exponential Functions are oneto-one

Which means that, if $2^{a}=2^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this, we need to write this equation as $2^{a}=2^{b}$
We can do this here by Adding $2^{(3 x-7)}$ to both sides giving:

$$
2^{(x+1)}=2^{(3 x-7)}
$$

We solved this equation in

Solving Exponential Equations - Example 2

Example: Find solutions to the equation:

$$
2^{(x+1)}-2^{(3 x-7)}=0
$$

- We saw that Exponential Functions are onetoone

Which means that, if $2^{a}=2^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this, we need to write this equation as $2^{a}=2^{b}$
We can do this here by Adding $2^{(3 x-7)}$ to both sides giving:

$$
2^{(x+1)}=2^{(3 x-7)}
$$

We solved this equation in Example 1
We found that the solution is $x=4$

Solving Exponential Equations - Example 2

Example: Find solutions to the equation:

$$
2^{(x+1)}-2^{(3 x-7)}=0
$$

- We saw that Exponential Functions are oneto-one

Which means that, if $2^{a}=2^{b}$ then $a=b$ because two different exponents cannot output the same value
To use this, we need to write this equation as $2^{a}=2^{b}$
We can do this here by Adding $2^{(3 x-7)}$ to both sides giving:

$$
2^{(x+1)}=2^{(3 x-7)}
$$

We solved this equation in Example 1
We found that the solution is $x=4$
Conclusion: The solution to $2^{(x+1)}-2^{(3 x-7)}=0$ is $x=4$

