Logarithmic Functions - Important bases

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions.

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Although, there is a different log for every base $=b$, some are more commonly used than others.

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Although, there is a different log for every base $=b$, some are more commonly used than others.
Our number system is base $b=10$, so a commonly used \log is: $\log _{10}(x)$

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Although, there is a different log for every base $=b$, some are more commonly used than others.
Our number system is base $b=10$, so a commonly used \log is: $\log _{10}(x)$ In fact it is so commonly used that it is called the common log

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Although, there is a different log for every base $=b$, some are more commonly used than others.
Our number system is base $b=10$, so a commonly used \log is: $\log _{10}(x)$ In fact it is so commonly used that it is called the common log

$$
\log _{10}(x)=\log (x)
$$

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Although, there is a different log for every base $=b$, some are more commonly used than others.
Our number system is base $b=10$, so a commonly used \log is: $\log _{10}(x)$ In fact it is so commonly used that it is called the common log

$$
\log _{10}(x)=\log (x)
$$

Another often used base is base $b=e$ which came up in

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Although, there is a different log for every base $=b$, some are more commonly used than others.
Our number system is base $b=10$, so a commonly used \log is: $\log _{10}(x)$ In fact it is so commonly used that it is called the common log

$$
\log _{10}(x)=\log (x)
$$

Another often used base is base $b=e$ which came up in Our banking example The logarithm with base $b=e$ is called the natural log and written as:

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Although, there is a different log for every base $=b$, some are more commonly used than others.
Our number system is base $b=10$, so a commonly used \log is: $\log _{10}(x)$ In fact it is so commonly used that it is called the common log

$$
\log _{10}(x)=\log (x)
$$

Another often used base is base $b=e$ which came up in Our banking example The logarithm with base $b=e$ is called the natural log and written as:

$$
\log _{e}(x)=\ln (x)
$$

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Although, there is a different log for every base $=b$, some are more commonly used than others.
Our number system is base $b=10$, so a commonly used \log is: $\log _{10}(x)$ In fact it is so commonly used that it is called the common log

$$
\log _{10}(x)=\log (x)
$$

Another often used base is base $b=e$ which came up in Our banking example The logarithm with base $b=e$ is called the natural log and written as:

$$
\log _{e}(x)=\ln (x)
$$

The natural log, $\ln (x)$, is the most frequently used logarithm

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Although, there is a different log for every base $=b$, some are more commonly used than others.
Our number system is base $b=10$, so a commonly used \log is: $\log _{10}(x)$ In fact it is so commonly used that it is called the common log

$$
\log _{10}(x)=\log (x)
$$

Another often used base is base $b=e$ which came up in Our banking example The logarithm with base $b=e$ is called the natural log and written as:

$$
\log _{e}(x)=\ln (x)
$$

The natural $\log , \ln (x)$, is the most frequently used logarithm We will wait to see why it is the "natural" choice in a Calculus course.

Logarithmic Functions - Important bases

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$
For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Since $f^{-1}(x)=\log _{b}(x)$ is the inverse of $y=f(x)=b^{x}$ we have:

$$
\log _{b}\left(b^{x}\right)=x \text { and } b^{\log _{b}(x)}=x
$$

Although, there is a different log for every base $=b$, some are more commonly used than others.
Our number system is base $b=10$, so a commonly used \log is: $\log _{10}(x)$ In fact it is so commonly used that it is called the common log

$$
\log _{10}(x)=\log (x)
$$

Another often used base is base $b=e$ which came up in Our banking example The logarithm with base $b=e$ is called the natural log and written as:

$$
\log _{e}(x)=\ln (x)
$$

The natural $\log , \ln (x)$, is the most frequently used logarithm We will wait to see why it is the "natural" choice in a Calculus course. Note: One other base that comes up frequently, typically in computer science, is base $b=2$.

