Exponential Functions - Inverses

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is oneto one
\rightarrow We saw that exponential functions are one-to-one.

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is one to one

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is oneto-one

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is oneto-one

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is oneto-one

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!
We call the inverse of an Exponential Function a Logarithm

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is oneto-one

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!
We call the inverse of an Exponential Function a Logarithm
\rightarrow Recall we have a different exponential function for each base $=b$

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is oneto-ne

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!
We call the inverse of an Exponential Function a Logarithm

- Reall we have a different exponential function for each base $=b$

This means that we have a different logarithm for each base $=b$

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is oneto-ne

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!
We call the inverse of an Exponential Function a Logarithm

- Reall we have a different exponential function for each base $=b$

This means that we have a different logarithm for each base $=b$
We write the logarithm function with base $=b$ as: $y=\log _{b}(x)$

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
-Recall: A function has an inverse if it is oneto-one
We saw that exponential functions are one-to-one.
Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!
We call the inverse of an Exponential Function a Logarithm
\checkmark Reall we have a different exponential function for each base $=b$
This means that we have a different logarithm for each base $=b$
We write the logarithm function with base $=b$ as: $y=\log _{b}(x)$
Since logarithms are the inverses of exponential functions, we have that:

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
-Recall: A function has an inverse if it is oneto-one

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!
We call the inverse of an Exponential Function a Logarithm

- Recall we have a different exponential function for each base $=b$

This means that we have a different logarithm for each base $=b$
We write the logarithm function with base $=b$ as: $y=\log _{b}(x)$
Since logarithms are the inverses of exponential functions, we have that:

$$
x=\log _{b}\left(b^{x}\right) \quad \text { and } \quad b^{\log _{b}(x)}=x
$$

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
-Recall: A function has an inverse if it is oneto-one

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!
We call the inverse of an Exponential Function a Logarithm

- Recall we have a different exponential function for each base $=b$

This means that we have a different logarithm for each base $=b$
We write the logarithm function with base $=b$ as: $y=\log _{b}(x)$
Since logarithms are the inverses of exponential functions, we have that:

$$
x=\log _{b}\left(b^{x}\right) \quad \text { and } \quad b^{\log _{b}(x)}=x
$$

If we use that $y=b^{x}$ then we can re-write the first equation as:

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is

```
> one-to-one
```

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!
We call the inverse of an Exponential Function a Logarithm
\triangle Recall we have a different exponential function for each base $=b$
This means that we have a different logarithm for each base $=b$
We write the logarithm function with base $=b$ as: $y=\log _{b}(x)$
Since logarithms are the inverses of exponential functions, we have that:

$$
x=\log _{b}\left(b^{x}\right) \quad \text { and } \quad b^{\log _{b}(x)}=x
$$

If we use that $y=b^{x}$ then we can re-write the first equation as:

$$
x=\log _{b}(y)
$$

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is

```
\ one-to-one
```

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!
We call the inverse of an Exponential Function a Logarithm

- Recall we have a different exponential function for each base $=b$ This means that we have a different logarithm for each base $=b$ We write the logarithm function with base $=b$ as: $y=\log _{b}(x)$ Since logarithms are the inverses of exponential functions, we have that:

$$
x=\log _{b}\left(b^{x}\right) \quad \text { and } \quad b^{\log _{b}(x)}=x
$$

If we use that $y=b^{x}$ then we can re-write the first equation as:

$$
x=\log _{b}(y) \quad \Leftrightarrow \quad y=b^{x}
$$

Exponential Functions - Inverses

We have seen two examples which we could not solve because our variable was in the exponent.
We need a way to "undo" exponents.
We need an inverse for exponential functions!
Recall: A function has an inverse if it is

```
> one-to-one
```

- We saw that exponential functions are one-to-one.

Conclusion: Exponential functions have an inverse.
None of our current functions are the inverse of Exponential Functions.
We need a new function!
We call the inverse of an Exponential Function a Logarithm
\triangle Recall we have a different exponential function for each base $=b$ This means that we have a different logarithm for each base $=b$ We write the logarithm function with base $=b$ as: $y=\log _{b}(x)$ Since logarithms are the inverses of exponential functions, we have that:

$$
x=\log _{b}\left(b^{x}\right) \quad \text { and } \quad b^{\log _{b}(x)}=x
$$

If we use that $y=b^{x}$ then we can re-write the first equation as:

$$
x=\log _{b}(y) \quad \Leftrightarrow \quad y=b^{x}
$$

Note: Domain of $\log _{b}=$ Range of $b^{x}=(0, \infty)$

