• We defined Logarithms as the inverse functions of Exponential Functions.

We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base = b, there is a different logarithm for each base = b

• We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base = b, there is a different logarithm for each base = b For the function $y = f(x) = b^x$ the Logarithm base = b is: $f^{-1}(x) = log_b(x)$

We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base = b, there is a different logarithm for each base = bFor the function $y = f(x) = b^x$ the Logarithm base = b is: $f^{-1}(x) = log_b(x)$

The most frequently used is the natural logarithm: $log_e(x) = ln(x)$

We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base = b, there is a different logarithm for each base = b For the function $y = f(x) = b^x$ the Logarithm base = b is: $f^{-1}(x) = log_b(x)$

• The most frequently used is the natural logarithm: $log_e(x) = ln(x)$ Let's look at the graph of y = ln(x)

 We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base = b, there is a different logarithm for each base = b
For the function y = f(x) = b^x the Logarithm base = b is: f⁻¹(x) = log_b(x)
The most frequently used is the natural logarithm: log_e(x) = ln(x)

Let's look at the graph of y = ln(x)

• We can graph y = ln(x) reflecting • the graph of $y = e^x$ across y = x

• We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base = b, there is a different logarithm for each base = bFor the function $y = f(x) = b^x$ the Logarithm base = b is: $f^{-1}(\mathbf{x}) = \log_{\mathbf{h}}(\mathbf{x})$ • The most frequently used is the natural logarithm: $log_e(x) = ln(x)$ Let's look at the graph of y = ln(x)• We can graph y = ln(x) reflecting • the graph of $y = e^x$ across y = x(0, 1) $y = e^x$ 2 3 -3 -4

• We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base = b, there is a different logarithm for each base = bFor the function $y = f(x) = b^x$ the Logarithm base = b is: $f^{-1}(\mathbf{x}) = \log_{\mathbf{b}}(\mathbf{x})$ • The most frequently used is the natural logarithm: $log_e(x) = ln(x)$ Let's look at the graph of y = ln(x)• We can graph y = ln(x) reflecting • the graph of $y = e^x$ across y = x(0, 1 $y = e^x$ (1, 0)² $= ln(\mathbf{x})$

Notice that the y-int at (0,1) reflects to the x-int at (1,0)

Algebraically, this is because: $1 = e^0 \Leftrightarrow 0 = ln(1)$

