Logarithmic Functions

Logarithmic Functions

- We defined Logarithms as the inverse functions of Exponential Functions.

Logarithmic Functions

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$

Logarithmic Functions

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$ For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

Logarithmic Functions

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$ For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

The most frequently used is the natural logarithm: $\log _{e}(x)=\ln (x)$

Logarithmic Functions

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$ For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

- The most firequently used is the natural logarithm: $\log _{e}(x)=\ln (x)$ Let's look at the graph of $y=\ln (x)$

Logarithmic Functions

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$ For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

CThe most firequently used is the natural logarithm: $\log _{e}(x)=\ln (x)$ Let's look at the graph of $y=\ln (x)$

Logarithmic Functions

We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$ For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

- The most ficeurently used is the natural logarithm: $\log _{e}(x)=\ln (x)$ Let's look at the graph of $y=\ln (x)$
- We can graph $y=\ln (x)$ reflecting
the graph of $y=e^{x}$ across $y=x$

Logarithmic Functions

We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$ For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

- The most ficeurently used is the natural logarithm: $\log _{e}(x)=\ln (x)$ Let's look at the graph of $y=\ln (x)$
- We can graph $y=\ln (x)$ reflecting
the graph of $y=e^{x}$ across $y=x$

Logarithmic Functions

We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$ For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

-The most ficequently used is the natural logarithm: $\log _{e}(x)=\ln (x)$ Let's look at the graph of $y=\operatorname{In}(x)$

- We can graph $y=\ln (x)$ reflecting the graph of $y=e^{x}$ across $y=x$

Logarithmic Functions

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$ For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

- The most fiequently used is the natural logarithm: $\log _{e}(x)=\ln (x)$ Let's look at the graph of $y=\ln (x)$
- We can graph $y=\ln (x)$ reflecting the graph of $y=e^{x}$ across $y=x$

Notice that the y-int at $(0,1)$ reflects to the x-int at $(1,0)$

Logarithmic Functions

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$ For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

- The most fiequently used is the natural logarithm: $\log _{e}(x)=\ln (x)$ Let's look at the graph of $y=\ln (x)$
- We can graph $y=\ln (x)$ reflecting the graph of $y=e^{x}$ across $y=x$

Notice that the y-int at $(0,1)$ reflects to the x-int at $(1,0)$
Algebraically, this is because: $1=e^{0} \Leftrightarrow 0=\ln (1)$

Logarithmic Functions

- We defined Logarithms as the inverse functions of Exponential Functions. We saw that, since there is a different exponential function for each base $=b$, there is a different logarithm for each base $=b$ For the function $y=f(x)=b^{x}$ the Logarithm base $=b$ is:

$$
f^{-1}(x)=\log _{b}(x)
$$

The most firequently used is the natural logarithm: $\log _{e}(x)=\ln (x)$ Let's look at the graph of $y=\ln (x)$

- We can graph $y=\ln (x)$ reflecting the graph of $y=e^{x}$ across $y=x$

Notice that the y-int at $(0,1)$ reflects to the x-int at $(1,0)$
Algebraically, this is because: $1=e^{0} \Leftrightarrow 0=\ln (1)$
The horiz. asymptote at $x=0$ reflects to the vert. asymptote at $y=0$

