• We found: that $y = 2^x$ is a function called an exponential function.

• We found: that $y = 2^x$ is a function called an exponential function.

Was there anything special about the base 2 here?

• We found: that $y = 2^x$ is a function called an exponential function.

Was there anything special about the base 2 here?

Can we define other Exponential Functions with different bases?

• We found: that $y = 2^x$ is a function called an exponential function. Was there anything special about the base 2 here? Can we define other Exponential Functions with different bases? The answer to both questions is yes!

• We found that $y = 2^x$ is a function called an exponential function. Was there anything special about the base 2 here? Can we define other Exponential Functions with different bases? The answer to both questions is yes!

For other bases **b**, we can define an exponential function: $y = b^x$

We found that $y = 2^x$ is a function called an exponential function. Was there anything special about the base 2 here? Can we define other Exponential Functions with different bases? The answer to both questions is yes! For other bases *b*, we can define an exponential function: $y = b^x$ So, what special property does 2 have that *b* needs as well?

• We found: that $y = 2^x$ is a function called an exponential function.

Was there anything special about the base 2 here?

Can we define other Exponential Functions with different bases? The answer to both questions is yes!

For other bases b, we can define an exponential function: $y = b^{\times}$ So, what special property does 2 have that b needs as well?

Recall: For certain exponents, like $\frac{1}{2}$, we can only use a base which is positive.

• We found: that $y = 2^x$ is a function called an exponential function.

Was there anything special about the base 2 here?

Can we define other Exponential Functions with different bases? The answer to both questions is yes!

For other bases b, we can define an exponential function: $y = b^{\times}$ So, what special property does 2 have that b needs as well?

Recall: For certain exponents, like $\frac{1}{2}$, we can only use a base which is positive.

For example: $4^{1/2} = \sqrt{4} = 2$ is a real number

• We found: that $y = 2^x$ is a function called an exponential function.

Was there anything special about the base 2 here?

Can we define other Exponential Functions with different bases? The answer to both questions is yes!

For other bases b, we can define an exponential function: $y = b^x$ So, what special property does 2 have that b needs as well?

Recall: For certain exponents, like $\frac{1}{2}$, we can only use a base which is positive.

For example: $4^{1/2} = \sqrt{4} = 2$ is a real number But $(-4)^{1/2} = \sqrt{-4} = 2i$ is a complex number

• We found: that $y = 2^x$ is a function called an exponential function.

Was there anything special about the base 2 here?

Can we define other Exponential Functions with different bases? The answer to both questions is yes!

For other bases b, we can define an exponential function: $y = b^x$ So, what special property does 2 have that b needs as well?

Recall: For certain exponents, like $\frac{1}{2}$, we can only use a base which is positive.

For example: $4^{1/2} = \sqrt{4} = 2$ is a real number But $(-4)^{1/2} = \sqrt{-4} = 2i$ is a complex number

In order to avoid this, we need our base b > 0, like 2 > 0

• We found: that $y = 2^x$ is a function called an exponential function.

Was there anything special about the base 2 here?

Can we define other Exponential Functions with different bases? The answer to both questions is yes!

For other bases b, we can define an exponential function: $y = b^x$ So, what special property does 2 have that b needs as well?

Recall: For certain exponents, like $\frac{1}{2}$, we can only use a base which is positive.

For example: $4^{1/2} = \sqrt{4} = 2$ is a real number

But $(-4)^{1/2} = \sqrt{-4} = 2i$ is a complex number

In order to avoid this, we need our base b > 0, like 2 > 0

Note: we have to avoid b = 0 because the exponent 0^0 is undefined

• We found: that $y = 2^x$ is a function called an exponential function.

Was there anything special about the base 2 here?

Can we define other Exponential Functions with different bases? The answer to both questions is yes!

For other bases b, we can define an exponential function: $y = b^x$ So, what special property does 2 have that b needs as well?

Recall: For certain exponents, like $\frac{1}{2}$, we can only use a base which is positive.

For example: $4^{1/2} = \sqrt{4} = 2$ is a real number But $(-4)^{1/2} = \sqrt{-4} = 2i$ is a complex number In order to avoid this, we need our base b > 0, like 2 > 0Note: we have to avoid b = 0 because the exponent 0^0 is undefined For any base b > 0 we have an exponential function: $y = b^x$

• We found: that $y = 2^x$ is a function called an exponential function.

Was there anything special about the base 2 here?

Can we define other Exponential Functions with different bases? The answer to both questions is yes!

For other bases b, we can define an exponential function: $y = b^x$ So, what special property does 2 have that b needs as well?

Recall: For certain exponents, like $\frac{1}{2}$, we can only use a base which is positive.

For example: $4^{1/2} = \sqrt{4} = 2$ is a real number But $(-4)^{1/2} = \sqrt{-4} = 2i$ is a complex number In order to avoid this, we need our base b > 0, like 2 > 0Note: we have to avoid b = 0 because the exponent 0^0 is undefined For any base b > 0 we have an exponential function: $y = b^x$ If we multiply b^x by any number *a* we still call it an exponential function

• We found: that $y = 2^x$ is a function called an exponential function.

Was there anything special about the base 2 here?

Can we define other Exponential Functions with different bases? The answer to both questions is yes!

For other bases b, we can define an exponential function: $y = b^{\times}$ So, what special property does 2 have that b needs as well?

Recall: For certain exponents, like $\frac{1}{2}$, we can only use a base which is positive.

For example: $4^{1/2} = \sqrt{4} = 2$ is a real number But $(-4)^{1/2} = \sqrt{-4} = 2i$ is a complex number In order to avoid this, we need our base b > 0, like 2 > 0Note: we have to avoid b = 0 because the exponent 0^0 is undefined For any base b > 0 we have an exponential function: $y = b^x$ If we multiply b^x by any number a we still call it an exponential function In general: For any numbers a and b we have the exponential function

 $y = a \cdot b^{x}$