Exponential Functions - Graphing

Exponential Functions - Graphing

- We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function We saw fist

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function We saw fist We can start by plotting points, starting with the x-values

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function We saw fist We can start by plotting points, starting with the x-values
We found the points:

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function We saw fist We can start by plotting points, starting with the x-values
We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function wessw first We can start by plotting points, starting with the x-values
We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function wessw first We can start by plotting points, starting with the x-values
We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function wessw first We can start by plotting points, starting with the x-values
We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function wessw first We can start by plotting points, starting with the x-values
We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function wessw first We can start by plotting points, starting with the x-values We found the points:

$$
\begin{aligned}
& 2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right) \\
& 2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right) \\
& 2^{3}=8 \rightarrow(3,8)
\end{aligned}
$$

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function wessw first We can start by plotting points, starting with the x-values We found the points:

$$
\begin{aligned}
& 2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right) \\
& 2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right) \\
& 2^{3}=8 \rightarrow(3,8)
\end{aligned}
$$

We can see that as x increase, our function increases steeply

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function wessw first We can start by plotting points, starting with the x-values We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$
$2^{3}=8 \rightarrow(3,8)$
What about $x \leq 0$?

We can see that as x increase, our function increases steeply

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function we saw first We can start by plotting points, starting with the x-values We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$
$2^{3}=8 \rightarrow(3,8)$
What about $x \leq 0$?
$2^{0}=1 \rightarrow(0,1)$

We can see that as x increase, our function increases steeply

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b
We will start with $b=2$, which is the exponential function we saw first
We can start by plotting points, starting with the x-values
We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$
$2^{3}=8 \rightarrow(3,8)$
What about $x \leq 0$?
$2^{0}=1 \rightarrow(0,1)$
$2^{-1}=\frac{1}{2} \rightarrow\left(-1, \frac{1}{2}\right)$

We can see that as x increase, our function increases steeply

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b
We will start with $b=2$, which is the exponential function we saw first
We can start by plotting points, starting with the x-values
We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$
$2^{3}=8 \rightarrow(3,8)$
What about $x \leq 0$?
$2^{0}=1 \rightarrow(0,1)$
$2^{-1}=\frac{1}{2} \rightarrow\left(-1, \frac{1}{2}\right)$
$2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} \rightarrow\left(-2, \frac{1}{4}\right)$

We can see that as x increase, our function increases steeply

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b
We will start with $b=2$, which is the exponential function wessw first
We can start by plotting points, starting with the x-values
We found the points:

$$
\begin{aligned}
& 2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right) \\
& 2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right) \\
& 2^{3}=8 \rightarrow(3,8)
\end{aligned}
$$

What about $x \leq 0$?
$2^{0}=1 \rightarrow(0,1)$
$2^{-1}=\frac{1}{2} \rightarrow\left(-1, \frac{1}{2}\right)$
$2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} \rightarrow\left(-2, \frac{1}{4}\right)$
$2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \rightarrow\left(-3, \frac{1}{8}\right)$

We can see that as x increase, our function increases steeply

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b
We will start with $b=2$, which is the exponential function ${ }^{\text {Wessw first }}$
We can start by plotting points, starting with the x-values
We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$
$2^{3}=8 \rightarrow(3,8)$
What about $x \leq 0$?
$2^{0}=1 \rightarrow(0,1)$
$2^{-1}=\frac{1}{2} \rightarrow\left(-1, \frac{1}{2}\right)$
$2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} \rightarrow\left(-2, \frac{1}{4}\right)$
$2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \rightarrow\left(-3, \frac{1}{8}\right)$

We can see that as x increase, our function increases steeply If $x=-n$ is a large negative, $2^{-n}=\frac{1}{2^{n}}>0$ but decreases close to 0

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b
We will start with $b=2$, which is the exponential function wessw first
We can start by plotting points, starting with the x-values
We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$
$2^{3}=8 \rightarrow(3,8)$
What about $x \leq 0$?
$2^{0}=1 \rightarrow(0,1)$
$2^{-1}=\frac{1}{2} \rightarrow\left(-1, \frac{1}{2}\right)$
$2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} \rightarrow\left(-2, \frac{1}{4}\right)$
$2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \rightarrow\left(-3, \frac{1}{8}\right)$

We can see that as x increase, our function increases steeply If $x=-n$ is a large negative, $2^{-n}=\frac{1}{2^{n}}>0$ but decreases close to 0

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b
We will start with $b=2$, which is the exponential function wessw first
We can start by plotting points, starting with the x-values
We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$
$2^{3}=8 \rightarrow(3,8)$
What about $x \leq 0$?
$2^{0}=1 \rightarrow(0,1)$
$2^{-1}=\frac{1}{2} \rightarrow\left(-1, \frac{1}{2}\right)$
$2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} \rightarrow\left(-2, \frac{1}{4}\right)$
$2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \rightarrow\left(-3, \frac{1}{8}\right)$

We can see that as x increase, our function increases steeply If $x=-n$ is a large negative, $2^{-n}=\frac{1}{2^{n}}>0$ but decreases close to 0

Exponential Functions - Graphing

© We called functions of the form $f(x)=b^{x}$ exponential functions with base $b>0$
Let's now look at the graphs of these functions for different bases b We will start with $b=2$, which is the exponential function wessw first We can start by plotting points, starting with the x-values We found the points:
$2^{1 / 3} \approx 1.26 \rightarrow\left(\frac{1}{3}, 1.26\right)$
$2^{1 / 2} \approx 1.41 \rightarrow\left(\frac{1}{2}, 1.41\right)$
$2^{3}=8 \rightarrow(3,8)$
What about $x \leq 0$?
$2^{0}=1 \rightarrow(0,1)$
$2^{-1}=\frac{1}{2} \rightarrow\left(-1, \frac{1}{2}\right)$
$2^{-2}=\frac{1}{2^{2}}=\frac{1}{4} \rightarrow\left(-2, \frac{1}{4}\right)$
$2^{-3}=\frac{1}{2^{3}}=\frac{1}{8} \rightarrow\left(-3, \frac{1}{8}\right)$

We can see that as x increase, our function increases steeply If $x=-n$ is a large negative, $2^{-n}=\frac{1}{2^{n}}>0$ but decreases close to 0

Exponential Functions - Graphing

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon $y=e^{x}$ lies between $y=2^{x}$ and $y=3^{x}$

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon
$y=e^{x}$ lies between $y=2^{x}$ and $y=3^{x}$
So far, we looked at $b>1$

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon
$y=e^{x}$ lies between $y=2^{x}$ and $y=3^{x}$
So far, we looked at $b>1$ What if $b<1$?

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon
$y=e^{x}$ lies between $y=2^{x}$ and $y=3^{x}$
So far, we looked at $b>1$ What if $b<1$?
Such as: $b=\frac{1}{2}$

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon $y=e^{x}$ lies between $y=2^{x}$ and $y=3^{x}$
So far, we looked at $b>1$ What if $b<1$?
Such as: $b=\frac{1}{2}=2^{-1}$

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon $y=e^{x}$ lies between $y=2^{x}$ and $y=3^{x}$
So far, we looked at $b>1$

What if $b<1$?

Such as: $b=\frac{1}{2}=2^{-1}$

$$
\text { So, } y=\left(\frac{1}{2}\right)^{x}=\left(2^{-1}\right)^{x}
$$

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon $y=e^{x}$ lies between $y=2^{x}$ and $y=3^{x}$
So far, we looked at $b>1$

What if $b<1$?

Such as: $b=\frac{1}{2}=2^{-1}$

So, $y=\left(\frac{1}{2}\right)^{x}=\left(2^{-1}\right)^{x}=2^{-x}$ by our Power Rules

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon $y=e^{x}$ lies between $y=2^{x}$ and $y=3^{x}$
So far, we looked at $b>1$

What if $b<1$?

Such as: $b=\frac{1}{2}=2^{-1}$

So, $y=\left(\frac{1}{2}\right)^{x}=\left(2^{-1}\right)^{x}=2^{-x}$ by our Power Rules
From Graph Shifing The graph of $y=2^{-x}$ is the graph of $y=2^{x}$ reflected across the y-axis

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon $y=e^{x}$ lies between $y=2^{x}$ and $y=3^{x}$
So far, we looked at $b>1$ What if $b<1$?
Such as: $b=\frac{1}{2}=2^{-1}$

So, $y=\left(\frac{1}{2}\right)^{x}=\left(2^{-1}\right)^{x}=2^{-x}$ by our Power Rules
From Graph Shifing The graph of $y=2^{-x}$ is the graph of $y=2^{x}$ reflected across the y-axis

Exponential Functions - Graphing

We have found the graph of $y=2^{x}$
What does the graph of $y=b^{x}$ look like for other bases?
If we plot points, we will see that their graphs are similar.
Since $3^{x}>2^{x}$ for $x>0$, the graph of $y=3^{x}$ increases more steeply moving to the right.
Similarly, the graph of $y=3^{x}$ decreases more steeply moving to the left.
Similarly, the graph of $y=5^{x}$ is even steeper
There is a number $e \approx 2.72$ which we'll learn about soon $y=e^{x}$ lies between $y=2^{x}$ and $y=3^{x}$
So far, we looked at $b>1$ What if $b<1$?
Such as: $b=\frac{1}{2}=2^{-1}$

So, $y=\left(\frac{1}{2}\right)^{x}=\left(2^{-1}\right)^{x}=2^{-x}$ by our Power Rules
From Graph Shifing The graph of $y=2^{-x}$ is the graph of $y=2^{x}$ reflected across the y-axis

Exponential Functions - Graphing

Exponential Functions - Graphing

In General: The graph of $y=b^{x}$ looks like:

Exponential Functions - Graphing

In General: The graph of $y=b^{x}$ looks like:
b>1

Exponential Functions - Graphing

In General: The graph of $y=b^{x}$ looks like:
$b>1$

Exponential Functions - Graphing

In General: The graph of $y=b^{x}$ looks like:
$b>1$
$0<b<1$

Using Graph Shifing we can graph $y=a \cdot b^{x}$ by vertically stretching by a

Exponential Functions - Graphing

In General: The graph of $y=b^{x}$ looks like:
$b>1$
$0<b<1$

Using Graph Shifing we can graph $y=a \cdot b^{x}$ by vertically stretching by a Furthermore, if $a<0$ then the graph will refiect acioss the xaxis

Exponential Functions - Graphing

In General: The graph of $y=b^{x}$ looks like:

$$
b>1
$$

$0<b<1$

Using Graph Shifiting we can graph $y=a \cdot b^{x}$ by vertically stretching by a Furthermore, if $a<0$ then the graph will reilect acioss the xaxis
$b>1$ and $a<0$

Exponential Functions - Graphing

In General: The graph of $y=b^{x}$ looks like:

$$
b>1
$$

$$
0<b<1
$$

Using Graph Shifiting we can graph $y=a \cdot b^{x}$ by vertically stretching by a
Furthermore, if $a<0$ then the graph will refilect acoss the x-axis
$b>1$ and $a<0$
$0<b<1$ and $a<0$

Exponential Functions - Graphing

In General: The graph of $y=b^{x}$ looks like:
$b>1$

$0<b<1$

Using Graph Shifiting we can graph $y=a \cdot b^{x}$ by vertically stretching by a
Furthermore, if $a<0$ then the graph will refict acoss the x-axis
$b>1$ and $a<0$

$$
0<b<1 \text { and } a<0
$$

Note: The y-intercept is at $y=a \cdot b^{0}=a \cdot 1=a \rightarrow(0, a)$

Exponential Functions - Graphing

In General: The graph of $y=b^{x}$ looks like:

$$
b>1
$$

$0<b<1$

Using Graph Shifiting we can graph $y=a \cdot b^{x}$ by vertically stretching by a
Furthermore, if $a<0$ then the graph will refilect acosss the x-axis
$b>1$ and $a<0$
$0<b<1$ and $a<0$

Note: The y-intercept is at $y=a \cdot b^{0}=a \cdot 1=a \rightarrow(0, a)$ Note 2: Exponential Functions are

