Exponential Functions

Exponential Functions

Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Exponential Functions

Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Exponential Functions

Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: $x=2$

Exponential Functions

- Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: $x=2$

Exponential Functions

- Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: $x=2$
At $x=2$ each curve has y-value: $y=2^{p}$

Exponential Functions

- Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: $x=2$
At $x=2$ each curve has y-value: $y=2^{p}$
Furthermore, as p increases $y=2^{p}$ increases as well

Exponential Functions

- Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: $x=2$
At $x=2$ each curve has y-value: $y=2^{p}$
Furthermore, as p increases $y=2^{p}$ increases as well So, for each value of p we get a different value of $y=2^{p}$

Exponential Functions

Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: $x=2$
At $x=2$ each curve has y-value: $y=2^{p}$
Furthermore, as p increases $y=2^{p}$ increases as well So, for each value of p we get a different value of $y=2^{p}$ This means that we can think of $y=2^{p}$ as a function with input p

Exponential Functions

Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: $x=2$
At $x=2$ each curve has y-value: $y=2^{p}$
Furthermore, as p increases $y=2^{p}$ increases as well So, for each value of p we get a different value of $y=2^{p}$ This means that we can think of $y=2^{p}$ as a function with input p Or, to use our usually variable: $y=2^{x}$

Exponential Functions

Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: $x=2$
At $x=2$ each curve has y-value: $y=2^{p}$
Furthermore, as p increases $y=2^{p}$ increases as well
So, for each value of p we get a different value of $y=2^{p}$
This means that we can think of $y=2^{p}$ as a function with input p
Or, to use our usually variable: $y=2^{x}$
This is a new type of function which has a variable in the exponent!

Exponential Functions

Recall: we studied many functions of the form $f(x)=x^{p}$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: $x=2$
At $x=2$ each curve has y-value: $y=2^{p}$
Furthermore, as p increases $y=2^{p}$ increases as well
So, for each value of p we get a different value of $y=2^{p}$
This means that we can think of $y=2^{p}$ as a function with input p
Or, to use our usually variable: $y=2^{x}$
This is a new type of function which has a variable in the exponent!
We call $y=2^{x}$ an Exponential Functions

