• Recall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Precall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Precall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: x = 2

Precall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: x = 2

• Recall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: x = 2At x = 2 each curve has y-value: $y = 2^{p}$

• Recall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: x = 2At x = 2 each curve has y-value: $y = 2^p$ Furthermore, as p increases $y = 2^p$ increases as well

• Recall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: x = 2At x = 2 each curve has y-value: $y = 2^p$ Furthermore, as p increases $y = 2^p$ increases as well So, for each value of p we get a different value of $y = 2^p$

• Recall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: x = 2At x = 2 each curve has y-value: $y = 2^p$ Furthermore, as p increases $y = 2^p$ increases as well So, for each value of p we get a different value of $y = 2^p$ This means that we can think of $y = 2^p$ as a function with input p

• Recall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: x = 2At x = 2 each curve has y-value: $y = 2^p$ Furthermore, as p increases $y = 2^p$ increases as well So, for each value of p we get a different value of $y = 2^p$ This means that we can think of $y = 2^p$ as a function with input p Or, to use our usually variable: $y = 2^x$

• Recall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: x = 2At x = 2 each curve has y-value: $y = 2^p$ Furthermore, as p increases $y = 2^p$ increases as well So, for each value of p we get a different value of $y = 2^p$ This means that we can think of $y = 2^p$ as a function with input p Or, to use our usually variable: $y = 2^x$ This is a new type of function which has a variable in the exponent!

• Recall: we studied many functions of the form $f(x) = x^p$ by looking at different values of p, especially by graphing them

Let us focus on the x-value: x = 2At x = 2 each curve has y-value: $y = 2^p$ Furthermore, as p increases $y = 2^p$ increases as well So, for each value of p we get a different value of $y = 2^p$ This means that we can think of $y = 2^p$ as a function with input p Or, to use our usually variable: $y = 2^x$ This is a new type of function which has a variable in the exponent! We call $y = 2^x$ an Exponential Functions