Exponentials in Banking - Compounded Continuously

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

CIn our fist example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

CIn our fist example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

- In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases.

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

- In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :
If $\mathrm{n}=1$:

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :
If $\mathrm{n}=1$: $\quad P_{1}(1)=$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

- In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\text { If } n=1: \quad P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

- In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\text { If } \mathrm{n}=1: \quad P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

CIn our fist example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases.
Looking at different values of n :

$$
\text { If } n=1: \quad P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600
$$

If $\mathrm{n}=12$:

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases.
Looking at different values of n :

$$
\begin{aligned}
& \text { If } \mathrm{n}=1: \quad P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } \mathrm{n}=12: \quad P_{12}(1)=
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

C In our fist example we saw that the amount of money owed on a loan after t years, in which we originally borrow $\$ 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\begin{aligned}
& \text { If } n=1: \quad P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: \quad P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1}
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

C In our fist example we saw that the amount of money owed on a loan after t years, in which we originally borrow $\$ 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\begin{aligned}
& \text { If } n=1: \quad P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: \quad P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } \mathrm{n}=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } \mathrm{n}=365 \text { : }
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\begin{aligned}
& \text { If } n=1: \quad P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: \quad P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: \quad P_{365}(1)=
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{\circ}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :
If $\mathrm{n}=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600$
If $\mathrm{n}=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78$
If $\mathrm{n}=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1}$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{\circ}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :
If $\mathrm{n}=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600$
If $\mathrm{n}=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78$
If $n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases.
Looking at different values of n :

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } n=525600:
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$ 10000}$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases.
Looking at different values of n :

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } n=525600: P_{525600}(1)=
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

CIn our fist example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$ 10000}$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: \quad P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } n=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1}
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

CIn our fist example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } n=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :
If $\mathrm{n}=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600$
If $\mathrm{n}=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78$
If $n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31$
If $\mathrm{n}=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37$
If $\mathrm{n}=1$ billion:

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

CIn our fist example we saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\begin{aligned}
& \text { If } n=1: \quad P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: \quad P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } n=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } n=1 \text { billion: } P_{\text {1billion }}(1)=
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow $\$ 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\begin{aligned}
& \text { If } \mathrm{n}=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } \mathrm{n}=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } \mathrm{n}=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } \mathrm{n}=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } \mathrm{n}=1 \text { billion: } P_{\text {1billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1}
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

- We saw that the amount of money owed on a loan after t years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of r compounded n times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

In our first example we saw that the amount of money owed on a loan after t years, in which we originally borrow $\$ 10000$ with an annual interest rate of 6% compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Furthermore, we noticed that as we increased the number of times per year that interest is compounded then the amount owed increases. Looking at different values of n :

$$
\begin{aligned}
& \text { If } n=1: \quad P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: \quad P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } n=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } n=1 \text { billion: } P_{1 \text { billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

Exponentials in Banking - Compounded Continuously

$$
\begin{aligned}
& \text { If } \mathrm{n}=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } \mathrm{n}=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } \mathrm{n}=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } \mathrm{n}=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } \mathrm{n}=1 \text { billion: } P_{\text {1billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Exponentials in Banking - Compounded Continuously

$$
\begin{aligned}
& \text { If } \mathrm{n}=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } \mathrm{n}=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } \mathrm{n}=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } \mathrm{n}=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } \mathrm{n}=1 \text { billion: } P_{\text {1billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Notice that as n increases, so does $P_{n}(1)$

Exponentials in Banking - Compounded Continuously

$$
\begin{aligned}
& \text { If } \mathrm{n}=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } \mathrm{n}=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } \mathrm{n}=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } \mathrm{n}=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } \mathrm{n}=1 \text { billion: } P_{\text {1billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Notice that as n increases, so does $P_{n}(1)$
However, P increases by a smaller and smaller amount.

Exponentials in Banking - Compounded Continuously

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } n=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } n=1 \text { billion: } P_{1 \text { billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Notice that as n increases, so does $P_{n}(1)$
However, P increases by a smaller and smaller amount.
Eventually there is no different when rounding to the nearest penny.

Exponentials in Banking - Compounded Continuously

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } n=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } n=1 \text { billion: } P_{1 \text { billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Notice that as n increases, so does $P_{n}(1)$
However, P increases by a smaller and smaller amount.
Eventually there is no different when rounding to the nearest penny. It can be shown that this amount that P settles on is given by:

Exponentials in Banking - Compounded Continuously

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } n=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } n=1 \text { billion: } P_{1 \text { billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Notice that as n increases, so does $P_{n}(1)$
However, P increases by a smaller and smaller amount.
Eventually there is no different when rounding to the nearest penny. It can be shown that this amount that P settles on is given by:

$$
P(t)=10000 e^{6 \% \cdot 1}
$$

Exponentials in Banking - Compounded Continuously

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } \mathrm{n}=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } \mathrm{n}=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } \mathrm{n}=1 \text { billion: } P_{1 \text { billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Notice that as n increases, so does $P_{n}(1)$
However, P increases by a smaller and smaller amount.
Eventually there is no different when rounding to the nearest penny. It can be shown that this amount that P settles on is given by:

$$
P(t)=10000 e^{6 \% \cdot 1}
$$

In General:

Exponentials in Banking - Compounded Continuously

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } n=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } n=1 \text { billion: } P_{1 \text { billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Notice that as n increases, so does $P_{n}(1)$
However, P increases by a smaller and smaller amount.
Eventually there is no different when rounding to the nearest penny. It can be shown that this amount that P settles on is given by:

$$
P(t)=10000 e^{6 \% \cdot 1}
$$

In General:

$$
P(t)=P_{o} e^{r t}
$$

Exponentials in Banking - Compounded Continuously

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } \mathrm{n}=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } \mathrm{n}=1 \text { billion: } P_{1 \text { billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Notice that as n increases, so does $P_{n}(1)$
However, P increases by a smaller and smaller amount.
Eventually there is no different when rounding to the nearest penny. It can be shown that this amount that P settles on is given by:

$$
P(t)=10000 e^{6 \% \cdot 1}
$$

In General:

$$
P(t)=P_{o} e^{r t}
$$

Where $e \approx 2.718 \ldots$ is an irrational number.

Exponentials in Banking - Compounded Continuously

$$
\begin{aligned}
& \text { If } n=1: P_{1}(1)=10000 \cdot\left(1+\frac{6 \%}{1}\right)^{1 \cdot 1}=10600 \\
& \text { If } n=12: P_{12}(1)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 \cdot 1} \approx 10616.78 \\
& \text { If } n=365: P_{365}(1)=10000 \cdot\left(1+\frac{6 \%}{365}\right)^{365 \cdot 1} \approx 10618.31 \\
& \text { If } \mathrm{n}=525600: P_{525600}(1)=10000 \cdot\left(1+\frac{6 \%}{525600}\right)^{525600 \cdot 1} \approx 10618.37 \\
& \text { If } \mathrm{n}=1 \text { billion: } P_{1 \text { billion }}(1)=10000 \cdot\left(1+\frac{6 \%}{1 \text { billion }}\right)^{1 \text { billion } \cdot 1} \approx 10618.37
\end{aligned}
$$

Notice that as n increases, so does $P_{n}(1)$
However, P increases by a smaller and smaller amount.
Eventually there is no different when rounding to the nearest penny. It can be shown that this amount that P settles on is given by:

$$
P(t)=10000 e^{6 \% \cdot 1}
$$

In General:

$$
P(t)=P_{o} e^{r t}
$$

Where $e \approx 2.718 \ldots$ is an irrational number.
Because interest is compounded more and more (infinitely) often, we say that the interest is compounded continuously

