
Exponentials in Banking - Compounded Continuously

We saw that the amount of money owed on a loan after t years, in
which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:

P(t) = Po
(
1 + r

n
)nt

In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
If n=1: P1(1) = 10000 ·
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1 + 6%

1

)1·1
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(
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)12t

Furthermore, we noticed that as we increased the number of times per
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Looking at different values of n:
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
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)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(
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Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
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We saw that the amount of money owed on a loan after t years, in

which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
If n=1: P1(1) = 10000 ·

(
1 + 6%

1

)1·1
= 10600

If n=12: P12(1) = 10000 ·
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12

)12·1
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Exponentials in Banking - Compounded Continuously
We saw that the amount of money owed on a loan after t years, in

which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:

P(t) = Po
(
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n
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
If n=1: P1(1) = 10000 ·

(
1 + 6%

1

)1·1
= 10600

If n=12: P12(1) = 10000 ·
(

1 + 6%
12

)12·1
≈ 10616.78
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Exponentials in Banking - Compounded Continuously
We saw that the amount of money owed on a loan after t years, in

which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
If n=1: P1(1) = 10000 ·

(
1 + 6%

1

)1·1
= 10600

If n=12: P12(1) = 10000 ·
(

1 + 6%
12

)12·1
≈ 10616.78
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(

1 + 6%
365

)365·1
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Exponentials in Banking - Compounded Continuously
We saw that the amount of money owed on a loan after t years, in

which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:

P(t) = Po
(
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
If n=1: P1(1) = 10000 ·

(
1 + 6%

1

)1·1
= 10600

If n=12: P12(1) = 10000 ·
(

1 + 6%
12

)12·1
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Exponentials in Banking - Compounded Continuously
We saw that the amount of money owed on a loan after t years, in

which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:

P(t) = Po
(
1 + r

n
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In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
If n=1: P1(1) = 10000 ·

(
1 + 6%

1

)1·1
= 10600

If n=12: P12(1) = 10000 ·
(

1 + 6%
12

)12·1
≈ 10616.78

If n=365: P365(1) = 10000 ·
(

1 + 6%
365

)365·1
≈ 10618.31

If n=525600: P525600(1) = 10000 ·
(

1 + 6%
525600

)525600·1
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Exponentials in Banking - Compounded Continuously
We saw that the amount of money owed on a loan after t years, in

which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:

P(t) = Po
(
1 + r

n
)nt

In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
If n=1: P1(1) = 10000 ·

(
1 + 6%

1

)1·1
= 10600

If n=12: P12(1) = 10000 ·
(

1 + 6%
12

)12·1
≈ 10616.78

If n=365: P365(1) = 10000 ·
(

1 + 6%
365

)365·1
≈ 10618.31

If n=525600: P525600(1) = 10000 ·
(

1 + 6%
525600

)525600·1
≈ 10618.37
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Exponentials in Banking - Compounded Continuously
We saw that the amount of money owed on a loan after t years, in

which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:

P(t) = Po
(
1 + r

n
)nt

In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
If n=1: P1(1) = 10000 ·

(
1 + 6%

1

)1·1
= 10600

If n=12: P12(1) = 10000 ·
(

1 + 6%
12

)12·1
≈ 10616.78

If n=365: P365(1) = 10000 ·
(

1 + 6%
365

)365·1
≈ 10618.31

If n=525600: P525600(1) = 10000 ·
(

1 + 6%
525600

)525600·1
≈ 10618.37

If n=1billion:
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Exponentials in Banking - Compounded Continuously
We saw that the amount of money owed on a loan after t years, in

which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:

P(t) = Po
(
1 + r

n
)nt

In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
If n=1: P1(1) = 10000 ·

(
1 + 6%

1

)1·1
= 10600

If n=12: P12(1) = 10000 ·
(

1 + 6%
12

)12·1
≈ 10616.78

If n=365: P365(1) = 10000 ·
(

1 + 6%
365

)365·1
≈ 10618.31

If n=525600: P525600(1) = 10000 ·
(

1 + 6%
525600

)525600·1
≈ 10618.37

If n=1billion: P1billion(1) =
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Exponentials in Banking - Compounded Continuously
We saw that the amount of money owed on a loan after t years, in

which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:

P(t) = Po
(
1 + r

n
)nt

In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
If n=1: P1(1) = 10000 ·

(
1 + 6%

1

)1·1
= 10600

If n=12: P12(1) = 10000 ·
(

1 + 6%
12

)12·1
≈ 10616.78

If n=365: P365(1) = 10000 ·
(

1 + 6%
365

)365·1
≈ 10618.31

If n=525600: P525600(1) = 10000 ·
(

1 + 6%
525600

)525600·1
≈ 10618.37

If n=1billion: P1billion(1) = 10000 ·
(

1 + 6%
1billion

)1billion·1
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Exponentials in Banking - Compounded Continuously
We saw that the amount of money owed on a loan after t years, in

which we originally borrow $Po with an annual interest rate of r
compounded n times per year is given by:

P(t) = Po
(
1 + r

n
)nt

In our first example we saw that the amount of money owed on a loan after t
years, in which we originally borrow $10000 with an annual interest rate
of 6% compounded 12 times per year is given by:

P (t) = 10000 ·
(

1 + 6%
12

)12t

Furthermore, we noticed that as we increased the number of times per
year that interest is compounded then the amount owed increases.
Looking at different values of n:
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Exponentials in Banking - Compounded Continuously
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Notice that as n increases, so does Pn(1)
However, P increases by a smaller and smaller amount.
Eventually there is no different when rounding to the nearest penny.
It can be shown that this amount that P settles on is given by:

P(t) = 10000e6%·1

In General:
P(t) = Poert

Where e ≈ 2.718 . . . is an irrational number.
Because interest is compounded more and more (infinitely) often, we
say that the interest is compounded continuously
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