## Exponential Functions in Banking - Introduction

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college How much money do pay back to the bank that loans us the money?

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college How much money do pay back to the bank that loans us the money? $\$ 10000$ ?

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college How much money do pay back to the bank that loans us the money? $\$ 10000$ ? What is the incentive for a bank to let us borrow that money?

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college How much money do pay back to the bank that loans us the money? $\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$} 10000$ on student loans for college How much money do pay back to the bank that loans us the money?
$\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed!

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$} 10000$ on student loans for college How much money do pay back to the bank that loans us the money? $\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed! This extra money paid back is called the interest

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college How much money do pay back to the bank that loans us the money?
$\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed!
This extra money paid back is called the interest
The amount of interest we pay back depends on how much we borrow, and is given as a percentage.

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college How much money do pay back to the bank that loans us the money?
$\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed!
This extra money paid back is called the interest
The amount of interest we pay back depends on how much we borrow, and is given as a percentage.
For our example, let's assume that we have to pay back an extra $6 \%$ for every year we borrow the money.

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college How much money do pay back to the bank that loans us the money?
$\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed!
This extra money paid back is called the interest
The amount of interest we pay back depends on how much we borrow, and is given as a percentage.
For our example, let's assume that we have to pay back an extra $6 \%$ for every year we borrow the money.
Note: This is also called the annual interest rate because the $6 \%$ is owed for every year.

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college How much money do pay back to the bank that loans us the money?
$\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed!
This extra money paid back is called the interest
The amount of interest we pay back depends on how much we borrow, and is given as a percentage.
For our example, let's assume that we have to pay back an extra $6 \%$ for every year we borrow the money.
Note: This is also called the annual interest rate because the $6 \%$ is owed for every year.
This means that the amount of money we owe depends on how long we borrow it for.

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college How much money do pay back to the bank that loans us the money?
$\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed!
This extra money paid back is called the interest
The amount of interest we pay back depends on how much we borrow, and is given as a percentage.
For our example, let's assume that we have to pay back an extra $6 \%$ for every year we borrow the money.
Note: This is also called the annual interest rate because the $6 \%$ is owed for every year.
This means that the amount of money we owe depends on how long we borrow it for.
In other words, the amount of money we owe is a function of time.

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college How much money do pay back to the bank that loans us the money?
$\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed!
This extra money paid back is called the interest
The amount of interest we pay back depends on how much we borrow, and is given as a percentage.
For our example, let's assume that we have to pay back an extra $6 \%$ for every year we borrow the money.
Note: This is also called the annual interest rate because the $6 \%$ is owed for every year.
This means that the amount of money we owe depends on how long we borrow it for.
In other words, the amount of money we owe is a function of time.
We write this as: $P(t)$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college How much money do pay back to the bank that loans us the money?
$\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed!
This extra money paid back is called the interest
The amount of interest we pay back depends on how much we borrow, and is given as a percentage.
For our example, let's assume that we have to pay back an extra $6 \%$ for every year we borrow the money.
Note: This is also called the annual interest rate because the $6 \%$ is owed for every year.
This means that the amount of money we owe depends on how long we borrow it for.
In other words, the amount of money we owe is a function of time.
We write this as: $P(t)$
Where $P$ is the amount owed.

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college How much money do pay back to the bank that loans us the money?
$\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed!
This extra money paid back is called the interest
The amount of interest we pay back depends on how much we borrow, and is given as a percentage.
For our example, let's assume that we have to pay back an extra $6 \%$ for every year we borrow the money.
Note: This is also called the annual interest rate because the $6 \%$ is owed for every year.
This means that the amount of money we owe depends on how long we borrow it for.
In other words, the amount of money we owe is a function of time.
We write this as: $P(t)$
Where $P$ is the amount owed. (often called Principle)

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college How much money do pay back to the bank that loans us the money?
$\$ 10000$ ? What is the incentive for a bank to let us borrow that money? In other words, what's in it for them?
Paying back the loan, we will need to pay back more than we borrowed!
This extra money paid back is called the interest
The amount of interest we pay back depends on how much we borrow, and is given as a percentage.
For our example, let's assume that we have to pay back an extra $6 \%$ for every year we borrow the money.
Note: This is also called the annual interest rate because the $6 \%$ is owed for every year.
This means that the amount of money we owe depends on how long we borrow it for.
In other words, the amount of money we owe is a function of time.
We write this as: $P(t)$
Where $P$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.

## Exponential Functions in Banking - Introduction

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$ $P(t)$ is the amount owed. (often called Principle) And $t$ is the number of years the money is borrowed.

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$ $P(t)$ is the amount owed. (often called Principle) And $t$ is the number of years the money is borrowed. The amount of money owed in the beginning is given by:

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$ $P(t)$ is the amount owed. (often called Principle) And $t$ is the number of years the money is borrowed. The amount of money owed in the beginning is given by: $P(0)=10000$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$ $P(t)$ is the amount owed. (often called Principle) And $t$ is the number of years the money is borrowed. The amount of money owed in the beginning is given by: $P(0)=10000$
After 1 year we owe:

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000$
Notice: We can factor out 10000

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)$
Notice: We can factor out 10000

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{\$} 600$ in interest in the first year.

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{\$} 600$ in interest in the first year.
How much money do we owe after 2 years?

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{\$} 600$ in interest in the first year.
How much money do we owe after 2 years?
$P(2)=\underbrace{10600}_{P(1)}+.06 \cdot \underbrace{10600}_{P(1)}$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{\$} 600$ in interest in the first year.
How much money do we owe after 2 years?
$P(2)=\underbrace{10600}_{P(1)}+.06 \cdot \underbrace{10600}_{P(1)}$
Notice: We can factor out 10600

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$} 10000$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{\$} 600$ in interest in the first year.
How much money do we owe after 2 years?
$P(2)=\underbrace{10600}_{P(1)}+.06 \cdot \underbrace{10600}_{P(1)}=\underbrace{10600}_{P(1)} \cdot(1+.06)$
Notice: We can factor out 10600

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$} 10000$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{\$} 600$ in interest in the first year.
How much money do we owe after 2 years?
$P(2)=\underbrace{10600}_{P(1)}+.06 \cdot \underbrace{10600}_{P(1)}=\underbrace{10600}_{P(1)} \cdot(1+.06)$
Notice: We can factor out 10600
But remember, $P(1)=10000 \cdot(1+.06)$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$} 10000$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{\$} 600$ in interest in the first year.
How much money do we owe after 2 years?
$P(2)=\underbrace{10600}_{P(1)}+.06 \cdot \underbrace{10600}_{P(1)}=\underbrace{10600}_{P(1)} \cdot(1+.06)=10000 \cdot(1+.06) \cdot(1+.06)$
Notice: We can factor out 10600
But remember, $P(1)=10000 \cdot(1+.06)$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{\$} 600$ in interest in the first year.
How much money do we owe after 2 years?
$P(2)=\underbrace{10600}_{P(1)}+.06 \cdot \underbrace{10600}_{P(1)}=\underbrace{10600}_{P(1)} \cdot(1+.06)=10000 \cdot(1+.06) \cdot(1+.06)$
Notice: We can factor out 10600
But remember, $P(1)=10000 \cdot(1+.06)$
This leaves us with: $P(2)=10000 \cdot(1+.06)^{2}$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow \$10000 on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{\$} 600$ in interest in the first year.
How much money do we owe after 2 years?
$P(2)=\underbrace{10600}_{P(1)}+.06 \cdot \underbrace{10600}_{P(1)}=\underbrace{10600}_{P(1)} \cdot(1+.06)=10000 \cdot(1+.06) \cdot(1+.06)$
Notice: We can factor out 10600
But remember, $P(1)=10000 \cdot(1+.06)$
This leaves us with: $P(2)=10000 \cdot(1+.06)^{2}=11236$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$} 10000$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{5} 600$ in interest in the first year.
How much money do we owe after 2 years?
$P(2)=\underbrace{10600}_{P(1)}+.06 \cdot \underbrace{10600}_{P(1)}=\underbrace{10600}_{P(1)} \cdot(1+.06)=10000 \cdot(1+.06) \cdot(1+.06)$
Notice: We can factor out 10600
But remember, $P(1)=10000 \cdot(1+.06)$
This leaves us with: $P(2)=10000 \cdot(1+.06)^{2}=11236$
Note: We paid another ${ }^{\$} 600$ in interest on the original ${ }^{\$} 10000$ we borrow, and an extra ${ }^{\$} 36$ which was interest on the first ${ }^{\$} 600$ interest.

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$} 10000$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
The amount of money owed in the beginning is given by:
$P(0)=10000$
After 1 year we owe:
$P(1)=10000+.06 \cdot 10000=10000 \cdot(1+.06)=10600$
Notice: We can factor out 10000
This means that we pay ${ }^{5} 600$ in interest in the first year.
How much money do we owe after 2 years?
$P(2)=\underbrace{10600}_{P(1)}+.06 \cdot \underbrace{10600}_{P(1)}=\underbrace{10600}_{P(1)} \cdot(1+.06)=10000 \cdot(1+.06) \cdot(1+.06)$
Notice: We can factor out 10600
But remember, $P(1)=10000 \cdot(1+.06)$
This leaves us with: $P(2)=10000 \cdot(1+.06)^{2}=11236$
Note: We paid another ${ }^{\$} 600$ in interest on the original ${ }^{\$} 10000$ we borrow, and an extra ${ }^{\$} 36$ which was interest on the first ${ }^{\$} 600$ interest. Interest earned on previous interest is called compound interest

## Exponential Functions in Banking - Introduction

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
$P(0)=10000$
$P(1)=10000 \cdot(1+.06)=10600$
$P(2)=10000 \cdot(1+.06)^{2}=11236$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
$P(0)=10000$
$P(1)=10000 \cdot(1+.06)=10600$
$P(2)=10000 \cdot(1+.06)^{2}=11236$
How much money do we owe after 3 years?

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
$P(0)=10000$
$P(1)=10000 \cdot(1+.06)=10600$
$P(2)=10000 \cdot(1+.06)^{2}=11236$
How much money do we owe after 3 years?
$P(3)=P(2) \cdot(1+.06)$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
$P(0)=10000$
$P(1)=10000 \cdot(1+.06)=10600$
$P(2)=10000 \cdot(1+.06)^{2}=11236$
How much money do we owe after 3 years?
$P(3)=P(2) \cdot(1+.06)=\underbrace{10000 \cdot(1+.06)^{2}}_{P(2)} \cdot(1+.06)$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college
For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
$P(0)=10000$
$P(1)=10000 \cdot(1+.06)=10600$
$P(2)=10000 \cdot(1+.06)^{2}=11236$
How much money do we owe after 3 years?
$P(3)=P(2) \cdot(1+.06)=\underbrace{10000 \cdot(1+.06)^{2}}_{P(2)} \cdot(1+.06)=10000 \cdot(1+.06)^{3}$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college
For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
$P(0)=10000$
$P(1)=10000 \cdot(1+.06)=10600$
$P(2)=10000 \cdot(1+.06)^{2}=11236$
How much money do we owe after 3 years?

$$
\begin{aligned}
& P(3)=P(2) \cdot(1+.06)=\underbrace{10000 \cdot(1+.06)^{2}}_{P(2)} \cdot(1+.06)=10000 \cdot(1+.06)^{3} \\
& P(3)=10000 \cdot(1+.06)^{3}
\end{aligned}
$$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college
For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.

$$
\begin{aligned}
& P(0)=10000 \cdot(1+.06)^{0} \\
& P(1)=10000 \cdot(1+.06)^{1}=10600 \\
& P(2)=10000 \cdot(1+.06)^{2}=11236
\end{aligned}
$$

How much money do we owe after 3 years?
$P(3)=P(2) \cdot(1+.06)=\underbrace{10000 \cdot(1+.06)^{2}}_{P(2)} \cdot(1+.06)=10000 \cdot(1+.06)^{3}$
$P(3)=10000 \cdot(1+.06)^{3}$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
$P(0)=10000 \cdot(1+.06)^{0}$
$P(1)=10000 \cdot(1+.06)^{1}=10600$
$P(2)=10000 \cdot(1+.06)^{2}=11236$
How much money do we owe after 3 years?
$P(3)=P(2) \cdot(1+.06)=\underbrace{10000 \cdot(1+.06)^{2}}_{P(2)} \cdot(1+.06)=10000 \cdot(1+.06)^{3}$
$P(3)=10000 \cdot(1+.06)^{3}$
What do we expect is how much money do we owe after 4 years?

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college
For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
$P(0)=10000 \cdot(1+.06)^{0}$
$P(1)=10000 \cdot(1+.06)^{1}=10600$
$P(2)=10000 \cdot(1+.06)^{2}=11236$
How much money do we owe after 3 years?
$P(3)=P(2) \cdot(1+.06)=\underbrace{10000 \cdot(1+.06)^{2}}_{P(2)} \cdot(1+.06)=10000 \cdot(1+.06)^{3}$
$P(3)=10000 \cdot(1+.06)^{3}$
What do we expect is how much money do we owe after 4 years?
$P(4)=10000 \cdot(1+.06)^{4}$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
$P(0)=10000 \cdot(1+.06)^{0}$
$P(1)=10000 \cdot(1+.06)^{1}=10600$
$P(2)=10000 \cdot(1+.06)^{2}=11236$
How much money do we owe after 3 years?
$P(3)=P(2) \cdot(1+.06)=\underbrace{10000 \cdot(1+.06)^{2}}_{P(2)} \cdot(1+.06)=10000 \cdot(1+.06)^{3}$
$P(3)=10000 \cdot(1+.06)^{3}$
What do we expect is how much money do we owe after 4 years?
$P(4)=10000 \cdot(1+.06)^{4}$
In General: The amount of money we owe after $t$ years is:

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
$P(t)$ is the amount owed. (often called Principle)
And $t$ is the number of years the money is borrowed.
$P(0)=10000 \cdot(1+.06)^{0}$
$P(1)=10000 \cdot(1+.06)^{1}=10600$
$P(2)=10000 \cdot(1+.06)^{2}=11236$
How much money do we owe after 3 years?
$P(3)=P(2) \cdot(1+.06)=\underbrace{10000 \cdot(1+.06)^{2}}_{P(2)} \cdot(1+.06)=10000 \cdot(1+.06)^{3}$
$P(3)=10000 \cdot(1+.06)^{3}$
What do we expect is how much money do we owe after 4 years?
$P(4)=10000 \cdot(1+.06)^{4}$
In General: The amount of money we owe after $t$ years is:

$$
P(t)=10000 \cdot(1+.06)^{t}
$$

## Exponential Functions in Banking - Introduction

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
In General: The amount of money we owe after $t$ years is:

$$
P(t)=10000 \cdot(1+.06)^{t}
$$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
In General: The amount of money we owe after $t$ years is:

$$
P(t)=10000 \cdot(1+.06)^{t}
$$

With this it is easy to answer questions such as:
How much money is owed after 10 years?

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
In General: The amount of money we owe after $t$ years is:

$$
P(t)=10000 \cdot(1+.06)^{t}
$$

With this it is easy to answer questions such as:
How much money is owed after 10 years?
$P(10)=10000 \cdot(1+.06)^{10}$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$
In General: The amount of money we owe after $t$ years is:

$$
P(t)=10000 \cdot(1+.06)^{t}
$$

With this it is easy to answer questions such as:
How much money is owed after 10 years?
$P(10)=10000 \cdot(1+.06)^{10} \approx 17908.48$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$ In General: The amount of money we owe after $t$ years is:

$$
P(t)=10000 \cdot(1+.06)^{t}
$$

With this it is easy to answer questions such as:
How much money is owed after 10 years?
$P(10)=10000 \cdot(1+.06)^{10} \approx 17908.48$
Suppose we graduate after 2.5 years, and interest has accrued while we were in school.

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$ In General: The amount of money we owe after $t$ years is:

$$
P(t)=10000 \cdot(1+.06)^{t}
$$

With this it is easy to answer questions such as:
How much money is owed after 10 years?
$P(10)=10000 \cdot(1+.06)^{10} \approx 17908.48$
Suppose we graduate after 2.5 years, and interest has accrued while we were in school.
How much money is owed after 2.5 years?

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$ In General: The amount of money we owe after $t$ years is:

$$
P(t)=10000 \cdot(1+.06)^{t}
$$

With this it is easy to answer questions such as:
How much money is owed after 10 years?
$P(10)=10000 \cdot(1+.06)^{10} \approx 17908.48$
Suppose we graduate after 2.5 years, and interest has accrued while we were in school.
How much money is owed after 2.5 years?
$P(2.5)=10000 \cdot(1+.06)^{2.5}$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$ In General: The amount of money we owe after $t$ years is:

$$
P(t)=10000 \cdot(1+.06)^{t}
$$

With this it is easy to answer questions such as:
How much money is owed after 10 years?
$P(10)=10000 \cdot(1+.06)^{10} \approx 17908.48$
Suppose we graduate after 2.5 years, and interest has accrued while we were in school.
How much money is owed after 2.5 years?
$P(2.5)=10000 \cdot(1+.06)^{2.5} \approx 11568.17$

## Exponential Functions in Banking - Introduction

Suppose that we plan to borrow ${ }^{\$ 10000}$ on student loans for college For our example, let's assume that the annual interest rate is $6 \%$ In General: The amount of money we owe after $t$ years is:

$$
P(t)=10000 \cdot(1+.06)^{t}
$$

With this it is easy to answer questions such as:
How much money is owed after 10 years?
$P(10)=10000 \cdot(1+.06)^{10} \approx 17908.48$
Suppose we graduate after 2.5 years, and interest has accrued while we were in school.
How much money is owed after 2.5 years?
$P(2.5)=10000 \cdot(1+.06)^{2.5} \approx 11568.17$
This question would have been very difficult to answer without find our formula first!

