## Exponential Functions in Banking - General

## Exponential Functions in Banking - General

- We saw that the amount of money owed on a loan after $t$ years, in which we originally borrow ${ }^{\$ 10000}$ with an annual interest rate of $6 \%$ compounded 12 times per year is given by:


## Exponential Functions in Banking - General

- We saw that the amount of money owed on a loan after $t$ years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of $6 \%$ compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

## Exponential Functions in Banking - General

- We saw that the amount of money owed on a loan after $t$ years, in which we originally borrow ${ }^{\$ 10000}$ with an annual interest rate of $6 \%$ compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Following the same steps, we can find that the amount of money owed on a loan after $t$ years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of $r$ compounded $n$ times per year is given by:

## Exponential Functions in Banking - General

- Wessaw that the amount of money owed on a loan after $t$ years, in which we originally borrow ${ }^{\$} 10000$ with an annual interest rate of $6 \%$ compounded 12 times per year is given by:

$$
P(t)=10000 \cdot\left(1+\frac{6 \%}{12}\right)^{12 t}
$$

Following the same steps, we can find that the amount of money owed on a loan after $t$ years, in which we originally borrow ${ }^{\$} P_{0}$ with an annual interest rate of $r$ compounded $n$ times per year is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

