Exponential Functions in Banking - Example 3

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$} 1000$ to put in the bank earning 4% interest comounded continuously. When will we double our money to $\$ 2000$?

Exponential Functions in Banking - Example 3

Example: Suppose that we have $\$ 1000$ to put in the bank earning 4% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.

Exponential Functions in Banking - Example 3

Example: Suppose that we have $\$ 1000$ to put in the bank earning 4% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

Exponential Functions in Banking - Example 3

Example: Suppose that we have $\$ 1000$ to put in the bank earning 4% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

- We saw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4\% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

- We saw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4\% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.
We saw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
2000=1000 e^{.04 \cdot t}
$$

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4\% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

- We saw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
2000=1000 e^{.04 \cdot t}
$$

We can begin to simplify our equation by dividing by 1000 to get:

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4\% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

- Wessw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
2000=1000 e^{.04 \cdot t}
$$

We can begin to simplify our equation by dividing by 1000 to get:

$$
\frac{2000}{1000}=\frac{1000 e^{.04 \cdot t}}{1000}
$$

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4\% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

- Wessw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
2000=1000 e^{.04 \cdot t}
$$

We can begin to simplify our equation by dividing by 1000 to get:

$$
\frac{2000}{1000}=\frac{1000 e^{.04 \cdot t}}{1000}=e^{.04 \cdot t}
$$

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4\% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

- Wessw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
2000=1000 e^{.04 \cdot t}
$$

We can begin to simplify our equation by dividing by 1000 to get:

$$
2=\frac{2000}{1000}=\frac{1000 e^{\cdot 04 \cdot t}}{1000}=e^{.04 \cdot t}
$$

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4\% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

- Wessw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
2000=1000 e^{.04 \cdot t}
$$

We can begin to simplify our equation by dividing by 1000 to get:

$$
2=\frac{2000}{1000}=\frac{1000 e^{.04 \cdot t}}{1000}=e^{.04 \cdot t}
$$

We still need to solve the equation:

$$
2=e^{.04 \cdot t}
$$

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4\% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

- Wessw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
2000=1000 e^{.04 \cdot t}
$$

We can begin to simplify our equation by dividing by 1000 to get:

$$
2=\frac{2000}{1000}=\frac{1000 e^{.04 \cdot t}}{1000}=e^{.04 \cdot t}
$$

We still need to solve the equation:

$$
2=e^{.04 \cdot t}
$$

How do we get at our variable t in the exponent?

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4\% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

- Wessw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
2000=1000 e^{.04 \cdot t}
$$

We can begin to simplify our equation by dividing by 1000 to get:

$$
2=\frac{2000}{1000}=\frac{1000 e^{.04 \cdot t}}{1000}=e^{.04 \cdot t}
$$

We still need to solve the equation:

$$
2=e^{.04 \cdot t}
$$

How do we get at our variable t in the exponent?
i.e. How we undo an exponential?

Exponential Functions in Banking - Example 3

Example: Suppose that we have ${ }^{\$} 1000$ to put in the bank earning 4\% interest comounded continuously. When will we double our money to \$2000?
In this example, we know the original amount of money and the amount of money in the end.
We want to know the amount of time the money will be in the bank.

- wesw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
2000=1000 e^{.04 \cdot t}
$$

We can begin to simplify our equation by dividing by 1000 to get:

$$
2=\frac{2000}{1000}=\frac{1000 e^{.04 \cdot t}}{1000}=e^{.04 \cdot t}
$$

We still need to solve the equation:

$$
2=e^{.04 \cdot t}
$$

How do we get at our variable t in the exponent?
i.e. How we undo an exponential?

We're stuck! We need an inverse for exponentials to figure this out!

