Example: Suppose that we have ^{\$}1000 to put in the bank earning 4% interest compounded continuously. How much money we will have after 5 years?

Example: Suppose that we have 1000 to put in the bank earning 4% interest compounded continuously. How much money we will have after 5 years?

In this example, we know the original amount of money.

Example: Suppose that we have ^{\$1000} to put in the bank earning 4% interest compounded continuously. How much money we will have after 5 years?

In this example, we know the original amount of money.

We want to know the amount of money in the end.

Example: Suppose that we have ^{\$1000} to put in the bank earning 4% interest compounded continuously. How much money we will have after 5 years?

In this example, we know the original amount of money.

We want to know the amount of money in the end.

• We saw that the amount of money when compounded continuously is given by:

 $P(t) = P_o e^{rt}$

Example: Suppose that we have \$1000 to put in the bank earning 4% interest comounded continuously. How much money we will have after 5 years.

In this example, we know the original amount of money.

We want to know the amount of money in the end.

• We saw that the amount of money when compounded continuously is given by:

 $P(t) = P_o e^{rt}$

Example: Suppose that we have \$1000 to put in the bank earning 4% interest comounded continuously. How much money we will have after 5 years.

In this example, we know the original amount of money.

We want to know the amount of money in the end.

• We saw that the amount of money when compounded continuously is given by:

$$P(t) = P_o e^{rt}$$

This gives us the equation:

 $P(5) = 1000e^{.04\cdot 5}$

Example: Suppose that we have \$1000 to put in the bank earning 4% interest comounded continuously. How much money we will have after 5 years.

In this example, we know the original amount of money.

We want to know the amount of money in the end.

• We saw that the amount of money when compounded continuously is given by:

$$P(t) = P_o e^{rt}$$

This gives us the equation:

 $P(5) = 1000e^{.04.5} \approx 1221.40$

Example: Suppose that we have \$1000 to put in the bank earning 4% interest comounded continuously. How much money we will have after 5 years.

In this example, we know the original amount of money.

We want to know the amount of money in the end.

• We saw that the amount of money when compounded continuously is given by:

$$P(t) = P_o e^{rt}$$

This gives us the equation:

$$P(5) = 1000e^{.04.5} \approx 1221.40$$

Conclusion: We will have $^{1221.40}$ in 5 years if we put 1000 in the bank today.