Exponential Functions in Banking - Example 2

Exponential Functions in Banking - Example 2

Example: Suppose that we have ${ }^{\$} 1000$ to put in the bank earning 4% interest compounded continuously. How much money we will have after 5 years?

Exponential Functions in Banking - Example 2

Example: Suppose that we have ${ }^{\$} 1000$ to put in the bank earning 4% interest compounded continuously. How much money we will have after 5 years?
In this example, we know the original amount of money.

Exponential Functions in Banking - Example 2

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4% interest compounded continuously. How much money we will have after 5 years?
In this example, we know the original amount of money.
We want to know the amount of money in the end.

Exponential Functions in Banking - Example 2

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4\% interest compounded continuously. How much money we will have after 5 years?
In this example, we know the original amount of money.
We want to know the amount of money in the end.

- we saw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

Exponential Functions in Banking - Example 2

Example: Suppose that we have ${ }^{\$} 1000$ to put in the bank earning 4% interest comounded continuously. How much money we will have after 5 years.
In this example, we know the original amount of money.
We want to know the amount of money in the end.

- we saw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

Exponential Functions in Banking - Example 2

Example: Suppose that we have ${ }^{\$} 1000$ to put in the bank earning 4\% interest comounded continuously. How much money we will have after 5 years.
In this example, we know the original amount of money.
We want to know the amount of money in the end.

- we saw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
P(5)=1000 e^{.04 \cdot 5}
$$

Exponential Functions in Banking - Example 2

Example: Suppose that we have ${ }^{\$} 1000$ to put in the bank earning 4\% interest comounded continuously. How much money we will have after 5 years.
In this example, we know the original amount of money.
We want to know the amount of money in the end.
Wesw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
P(5)=1000 e^{.04 \cdot 5} \approx 1221.40
$$

Exponential Functions in Banking - Example 2

Example: Suppose that we have ${ }^{\$ 1000}$ to put in the bank earning 4% interest comounded continuously. How much money we will have after 5 years.
In this example, we know the original amount of money.
We want to know the amount of money in the end.
Wesw that the amount of money when compounded continuously is given by:

$$
P(t)=P_{o} e^{r t}
$$

This gives us the equation:

$$
P(5)=1000 e^{.04 \cdot 5} \approx 1221.40
$$

Conclusion: We will have ${ }^{\$} 1221.40$ in 5 years if we put ${ }^{\$} 1000$ in the bank today.

