Exponential Functions in Banking - Example 1

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have $\$ 3000$ in the bank in 5 years if we are earning 2% interest compounded monthly?

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have $\$ 3000$ in the bank in 5 years if we are earning 2% interest compounded monthly?
In this example, we know the amount of money in the end.

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have $\$ 3000$ in the bank in 5 years if we are earning 2% interest compounded monthly?
In this example, we know the amount of money in the end.
We want to know the original amount of money put away.

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have $\$ 3000$ in the bank in 5 years if we are earning 2% interest compounded monthly?
In this example, we know the amount of money in the end.
We want to know the original amount of money put away.

- We saw that the amount of money is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have \$3000 in the bank in 5 years if we are earning 2\% interest compounded monthly?
In this example, we know the amount of money in the end.
We want to know the original amount of money put away.

- We saw that the amount of money is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have \$3000 in the bank in 5 years if we are earning 2\% interest compounded monthly?
In this example, we know the amount of money in the end.
We want to know the original amount of money put away.

- We saw that the amount of money is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

This gives us the equation:

$$
3000=P_{\circ}\left(1+\frac{.02}{12}\right)^{12 \cdot 5}
$$

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have $\$ 3000$ in the bank in 5 years if we are earning 2% interest compounded monthly?
In this example, we know the amount of money in the end.
We want to know the original amount of money put away.

- We saw that the amount of money is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

This gives us the equation:

$$
3000=P_{\circ}\left(1+\frac{.02}{12}\right)^{12 \cdot 5}
$$

To solve for P_{0} we divide by the messy number: $\left(1+\frac{.02}{12}\right)^{12.5}$

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have $\$ 3000$ in the bank in 5 years if we are earning 2% interest compounded monthly?
In this example, we know the amount of money in the end.
We want to know the original amount of money put away.

- We saw that the amount of money is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

This gives us the equation:

$$
3000=P_{o}\left(1+\frac{.02}{12}\right)^{12 \cdot 5}
$$

To solve for P_{o} we divide by the messy number: $\left(1+\frac{.02}{12}\right)^{12 \cdot 5}$ This gives us:

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have $\$ 3000$ in the bank in 5 years if we are earning 2\% interest compounded monthly?
In this example, we know the amount of money in the end.
We want to know the original amount of money put away.

- We saw that the amount of money is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

This gives us the equation:

$$
3000=P_{o}\left(1+\frac{.02}{12}\right)^{12 \cdot 5}
$$

To solve for P_{0} we divide by the messy number: $\left(1+\frac{.02}{12}\right)^{12 \cdot 5}$ This gives us:

$$
P_{\circ}=\frac{3000}{\left(1+\frac{.02}{12}\right)^{12 \cdot 5}}
$$

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have $\$ 3000$ in the bank in 5 years if we are earning 2\% interest compounded monthly?
In this example, we know the amount of money in the end.
We want to know the original amount of money put away.

- We saw that the amount of money is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

This gives us the equation:

$$
3000=P_{o}\left(1+\frac{.02}{12}\right)^{12 \cdot 5}
$$

To solve for P_{0} we divide by the messy number: $\left(1+\frac{.02}{12}\right)^{12 \cdot 5}$ This gives us:

$$
P_{o}=\frac{3000}{\left(1+\frac{.02}{12}\right)^{12 \cdot 5}} \approx 2714.74
$$

Exponential Functions in Banking - Example 1

Example: How much money we would need to put away today to have \$3000 in the bank in 5 years if we are earning 2\% interest compounded monthly?
In this example, we know the amount of money in the end.
We want to know the original amount of money put away.

- We saw that the amount of money is given by:

$$
P(t)=P_{o}\left(1+\frac{r}{n}\right)^{n t}
$$

This gives us the equation:

$$
3000=P_{\circ}\left(1+\frac{.02}{12}\right)^{12 \cdot 5}
$$

To solve for P_{0} we divide by the messy number: $\left(1+\frac{.02}{12}\right)^{12 \cdot 5}$ This gives us:

$$
P_{o}=\frac{3000}{\left(1+\frac{.02}{12}\right)^{12 \cdot 5}} \approx 2714.74
$$

Conclusion: We need to put away ${ }^{\$} 2714.74$ to have ${ }^{\$} 3000$ in 5 years

