## Circles

## Circles

## What is a circle?

## Circles

## What is a circle?

We know what a circle looks like!


## Circles

## What is a circle?

We know what a circle looks like!
But what is a circle exactly?


## Circles

What is a circle?
We know what a circle looks like!
But what is a circle exactly?


A circle is a collection of points that are equally distanced from a single point, called the center

## Circles

What is a circle?
We know what a circle looks like!
But what is a circle exactly?


A circle is a collection of points that are equally distanced from a single point, called the center


## Circles

What is a circle?
We know what a circle looks like!
But what is a circle exactly?


A circle is a collection of points that are equally distanced from a single point, called the center


The shared distance from the center is called the radius $r$

## Circles

What is a circle?
We know what a circle looks like!
But what is a circle exactly?


A circle is a collection of points that are equally distanced from a single point, called the center


The shared distance from the center is called the radius $r$ Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from $(h, k)$

## Circles

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from ( $h, k$ )

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from $(h, k)$
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from $(h, k)$
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$


## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from $(h, k)$
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$


Notice: For any point $(x, y)$ on the circle, the distance to the origin is 5

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from $(h, k)$
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$


Notice: For any point $(x, y)$ on the circle, the distance to the origin is 5 - We leamed that the distance between points $(x, y)$ and $(0,0)$ is given by: distance ${ }^{2}=(x-0)^{2}+(y-0)^{2}$

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from $(h, k)$
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$


Notice: For any point $(x, y)$ on the circle, the distance to the origin is 5 - We learned that the distance between points $(x, y)$ and $(0,0)$ is given by:

$$
5^{2}=\text { distance }^{2}=(x-0)^{2}+(y-0)^{2}
$$

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from $(h, k)$
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$


Notice: For any point $(x, y)$ on the circle, the distance to the origin is 5 - We leamed that the distance between points $(x, y)$ and $(0,0)$ is given by:

$$
5^{2}=\text { distance }^{2}=(x-0)^{2}+(y-0)^{2}=x^{2}+y^{2}
$$

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from $(h, k)$
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$


Notice: For any point $(x, y)$ on the circle, the distance to the origin is 5 - We learned that the distance between points $(x, y)$ and $(0,0)$ is given by:

$$
5^{2}=\text { distance }^{2}=(x-0)^{2}+(y-0)^{2}=x^{2}+y^{2}
$$

So, we are left with an equation of the circle of radius $r=5$ with center at the origin ( 0,0 ):

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from $(h, k)$
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$


Notice: For any point $(x, y)$ on the circle, the distance to the origin is 5 - We learned that the distance between points $(x, y)$ and $(0,0)$ is given by:

$$
5^{2}=\text { distance }^{2}=(x-0)^{2}+(y-0)^{2}=x^{2}+y^{2}
$$

So, we are left with an equation of the circle of radius $r=5$ with center at the origin $(0,0)$ :

$$
5^{2}=x^{2}+y^{2}
$$

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from $(h, k)$
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$


Notice: For any point $(x, y)$ on the circle, the distance to the origin is 5 - We learned that the distance between points $(x, y)$ and $(0,0)$ is given by:

$$
5^{2}=\text { distance }^{2}=(x-0)^{2}+(y-0)^{2}=x^{2}+y^{2}
$$

So, we are left with an equation of the circle of radius $r=5$ with center at the origin $(0,0)$ :

$$
5^{2}=x^{2}+y^{2}
$$

Because the distance $=$ radius on the left hand side, we have:

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from ( $h, k$ )
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$


Notice: For any point $(x, y)$ on the circle, the distance to the origin is 5 - We learned that the distance between points $(x, y)$ and $(0,0)$ is given by:

$$
5^{2}=\text { distance }^{2}=(x-0)^{2}+(y-0)^{2}=x^{2}+y^{2}
$$

So, we are left with an equation of the circle of radius $r=5$ with center at the origin $(0,0)$ :

$$
5^{2}=x^{2}+y^{2}
$$

Because the distance $=$ radius on the left hand side, we have: In General: An equation for the circle of radius $r$ with center at the origin $(0,0)$ is:

## Circles

Definition: A circle of radius $r$ and center $(h, k)$ is the set of points distance $r$ from ( $h, k$ )
Example: Draw the circle of radius $r=5$ with center at the origin $(0,0)$


Notice: For any point $(x, y)$ on the circle, the distance to the origin is 5 - We learned that the distance between points $(x, y)$ and $(0,0)$ is given by:

$$
5^{2}=\text { distance }^{2}=(x-0)^{2}+(y-0)^{2}=x^{2}+y^{2}
$$

So, we are left with an equation of the circle of radius $r=5$ with center at the origin $(0,0)$ :

$$
5^{2}=x^{2}+y^{2}
$$

Because the distance $=$ radius on the left hand side, we have: In General: An equation for the circle of radius $r$ with center at the origin $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

