Equation of a Circle

Equation of a Circle

- We saw an equation for the circle of radius r and center at $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

Equation of a Circle

- We saw an equation for the circle of radius r and center at $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

What if the center is not at the origin?

Equation of a Circle

We saw an equation for the circle of radius r and center at $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

What if the center is not at the origin?
Can we find a similar equation for the circle of radius r and center (h, k)

Equation of a Circle

- We saw an equation for the circle of radius r and center at $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

What if the center is not at the origin?
Can we find a similar equation for the circle of radius r and center (h, k)

Recall that our definition of a circle is all points (x, y) so that the distance between (x, y) and (h, k) is r

Equation of a Circle

We saw an equation for the circle of radius r and center at $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

What if the center is not at the origin?
Can we find a similar equation for the circle of radius r and center (h, k)

Recall that our definition of a circle is all points (x, y) so that the distance between (x, y) and (h, k) is r
-Using the Distance Formula we want all points so that:

Equation of a Circle

We saw an equation for the circle of radius r and center at $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

What if the center is not at the origin?
Can we find a similar equation for the circle of radius r and center (h, k)

Recall that our definition of a circle is all points (x, y) so that the distance between (x, y) and (h, k) is r

- Using the Distance Formula we want all points so that:

$$
\operatorname{distance} e^{2}=(x-h)^{2}+(y-k)^{2}
$$

Equation of a Circle

We saw an equation for the circle of radius r and center at $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

What if the center is not at the origin?
Can we find a similar equation for the circle of radius r and center (h, k)

Recall that our definition of a circle is all points (x, y) so that the distance between (x, y) and (h, k) is r
\checkmark Using the Distance Formula we want all points so that:

$$
r^{2}=\operatorname{distance}^{2}=(x-h)^{2}+(y-k)^{2}
$$

Equation of a Circle

We saw an equation for the circle of radius r and center at $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

What if the center is not at the origin?
Can we find a similar equation for the circle of radius r and center (h, k)

Recall that our definition of a circle is all points (x, y) so that the distance between (x, y) and (h, k) is r
\checkmark Using the Distance Formula we want all points so that:

$$
r^{2}=\operatorname{distance}^{2}=(x-h)^{2}+(y-k)^{2}
$$

Conclusion: The circle with radius r and center (h, k) is all the points (x, y) so that:

$$
r^{2}=(x-h)^{2}+(y-k)^{2}
$$

Equation of a Circle

We saw an equation for the circle of radius r and center at $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

What if the center is not at the origin?
Can we find a similar equation for the circle of radius r and center (h, k)

Recall that our definition of a circle is all points (x, y) so that the distance between (x, y) and (h, k) is r
\checkmark Using the Distance Formula we want all points so that:

$$
r^{2}=\operatorname{distance}^{2}=(x-h)^{2}+(y-k)^{2}
$$

Conclusion: The circle with radius r and center (h, k) is all the points (x, y) so that:

$$
r^{2}=(x-h)^{2}+(y-k)^{2}
$$

Note: To solve this for r directly, we take the square root of both sides:

Equation of a Circle

We saw an equation for the circle of radius r and center at $(0,0)$ is:

$$
r^{2}=x^{2}+y^{2}
$$

What if the center is not at the origin?
Can we find a similar equation for the circle of radius r and center (h, k)

Recall that our definition of a circle is all points (x, y) so that the distance between (x, y) and (h, k) is r
Using the Distance Formula we want all points so that:

$$
r^{2}=\operatorname{distance}^{2}=(x-h)^{2}+(y-k)^{2}
$$

Conclusion: The circle with radius r and center (h, k) is all the points (x, y) so that:

$$
r^{2}=(x-h)^{2}+(y-k)^{2}
$$

Note: To solve this for r directly, we take the square root of both sides:

$$
r=\sqrt{(x-h)^{2}+(y-k)^{2}}
$$

